

**DSC 40A**

*Theoretical Foundations of Data Science I*

# Announcements

- Homework 7 due 12/3.
- SET (<40%)
- Final exam

# Question

Answer at [q.dsc40a.com](http://q.dsc40a.com)

Remember, you can always ask questions at  
[q.dsc40a.com!](http://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture  
Questions" link in the top right corner of [dsc40a.com](http://dsc40a.com).

# Outline

- We'll look at the clustering problem in machine learning and an algorithm that solves this problem.
- Look out for connections to loss functions and risk minimization!

# Today

## Taxonomy of Machine Learning

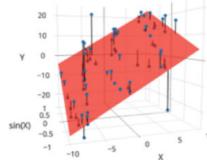
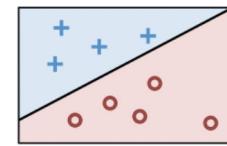
Supervised Learning

Quantitative Response

Regression

Categorical Response

Classification



Reinforcement Learning  
(not covered)

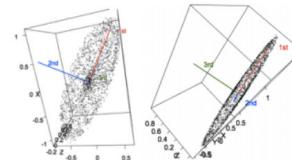
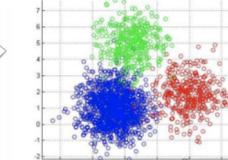


Alpha Go

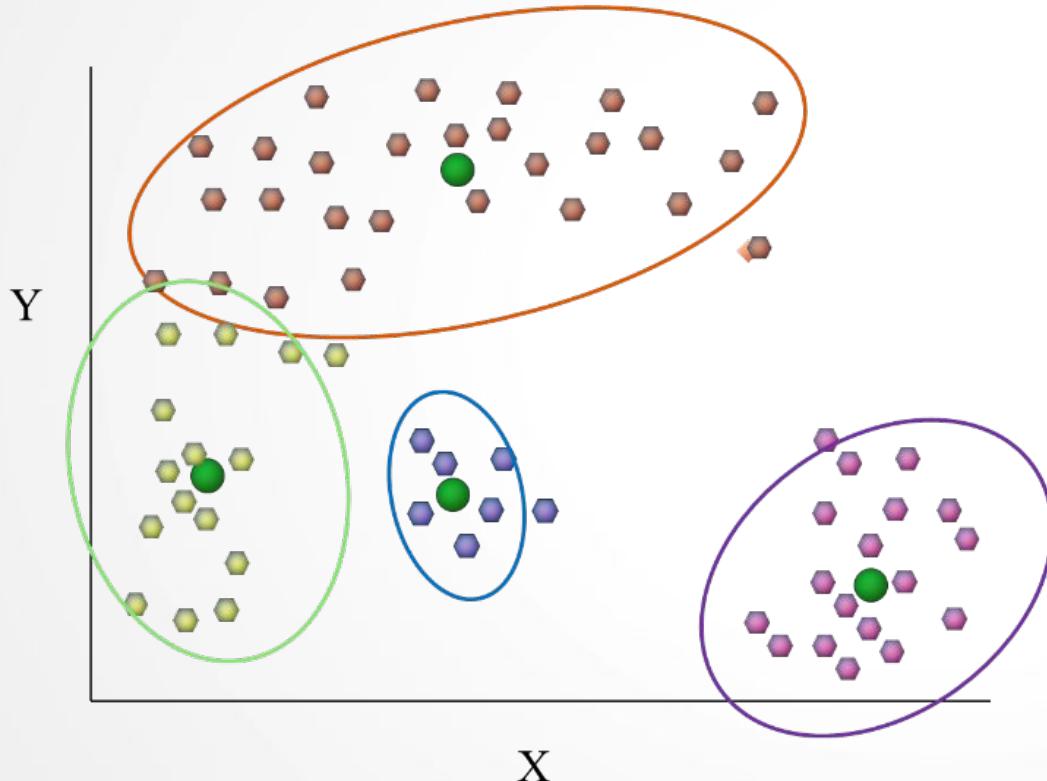
Unsupervised Learning

Dimensionality Reduction

Clustering



# Clustering: Applications



- Bot detection
- Marketing to different subpopulations
- Discovering structure:
  - strains of viruses
  - new species
  - communities in a social network
  - chemicals properties

# Clustering: Problem Statement

Given a list of  $n$  data points (or vectors) in  $\mathbb{R}^d$

$$x_1, x_2, \dots, x_n$$

and a positive integer,  $k$ ,

group the data points into  $k$  groups (clusters) of nearby points.

# Clustering: Problem Statement

Given a list of  $n$  data points (or vectors) in  $\mathbb{R}^d$

$$x_1, x_2, \dots, x_n$$

and a positive integer,  $k$ ,

group the data points into  $k$  groups (clusters) of nearby points.

Which of these inequalities should be true?

- A.  $d < n$
- B.  $n < d$
- C.  $k < n$
- D.  $n < k$

# How to define groups?

Pick  $k$  cluster centers (centroids),

$$\mu_1, \mu_2, \dots, \mu_k$$

These  $k$  centroids define the  $k$  groups, by placing each data point in the group corresponding to the nearest centroid.

# How to define centroids?

Choose the  $k$  cluster centers (centroids) to minimize a cost function.

$\text{Cost}(\mu_1, \mu_2, \dots, \mu_k) =$  total squared distance of each data point  $x_i$   
to its nearest centroid  $\mu_j$

# Lloyds Algorithm, or k-Means Clustering

1. Randomly initialize the  $k$  centroids.
2. Keep centroids fixed. Update groups.  
*Assign each point to the nearest centroid.*
3. Keep groups fixed. Update centroids.  
*Move each centroid to the center of its group.*
4. Repeat steps 2 and 3 until done.

# Step 1: Randomly initialize the k centroids.

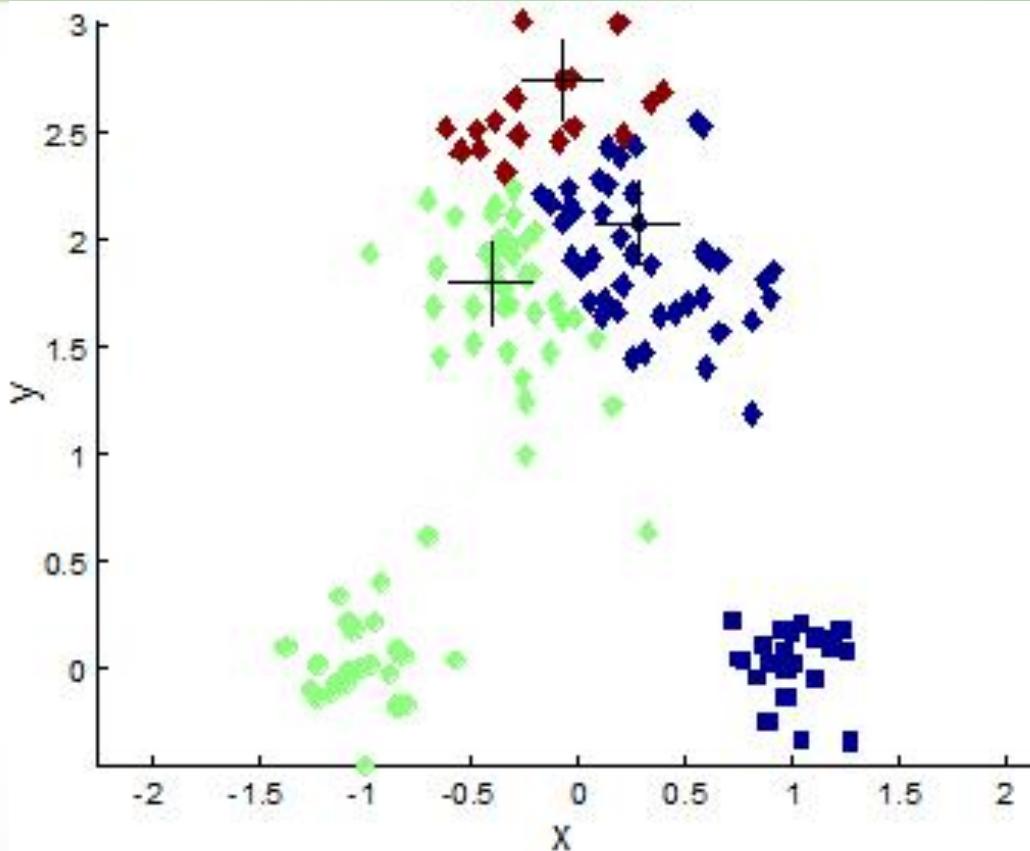
Two common strategies:

- Randomly select k of the data points  $x_i$ .
- Randomly assign each data point to one of k groups. Set the centroid of each group to be the center of the points assigned to that group.

## Step 2: Keep centroids fixed. Update groups.

For each point,

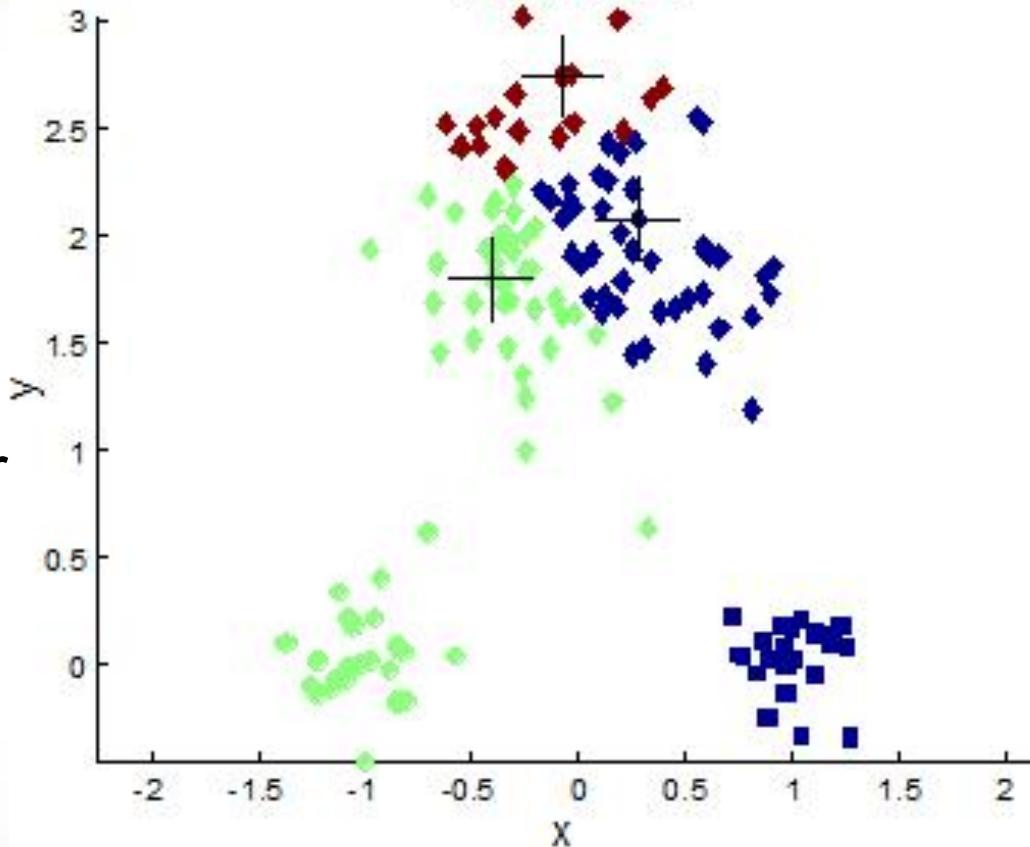
- find the nearest centroid and
- add the point to a group corresponding to that nearest centroid.



## Step 3: Keep groups fixed. Update centroids.

For each centroid,

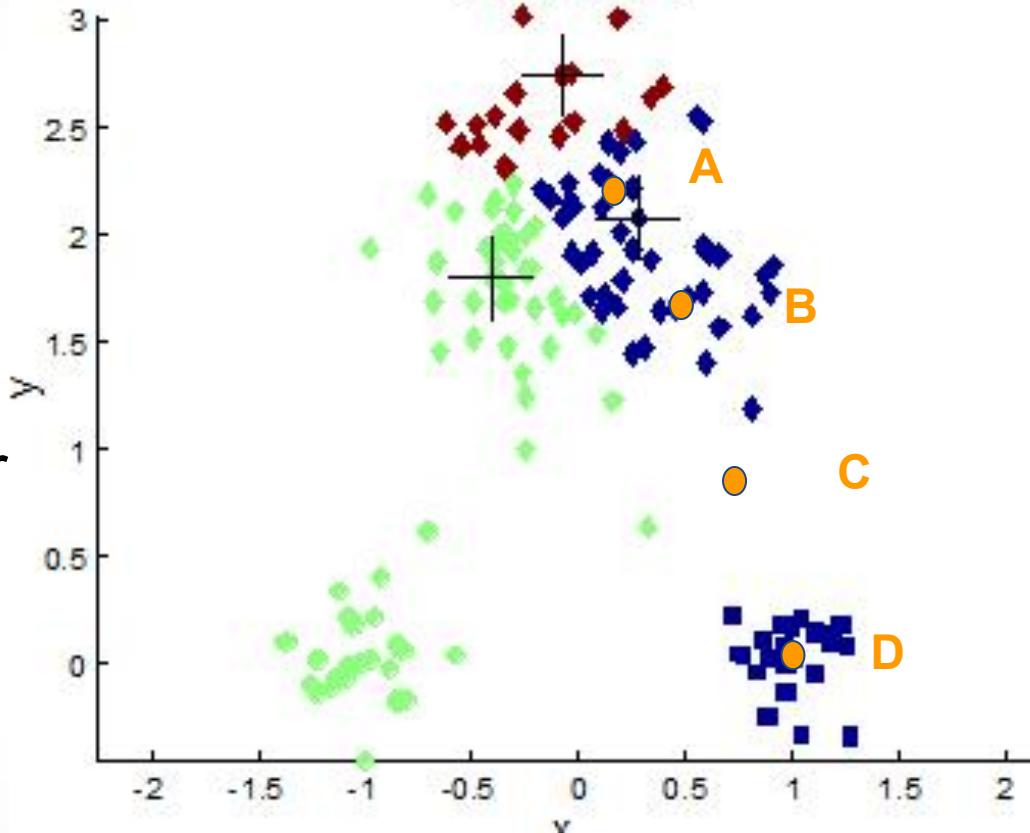
- average the coordinates of all data points in the group, and
- move the centroid to this center point with average coordinates.



## Step 3: Keep groups fixed. Update centroids.

For each centroid,

- average the coordinates of all data points in the group, and
- move the centroid to this center point with average coordinates.



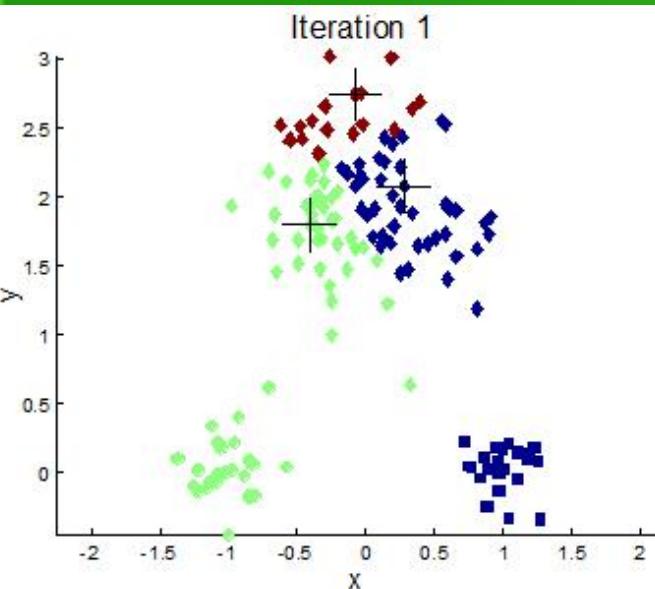
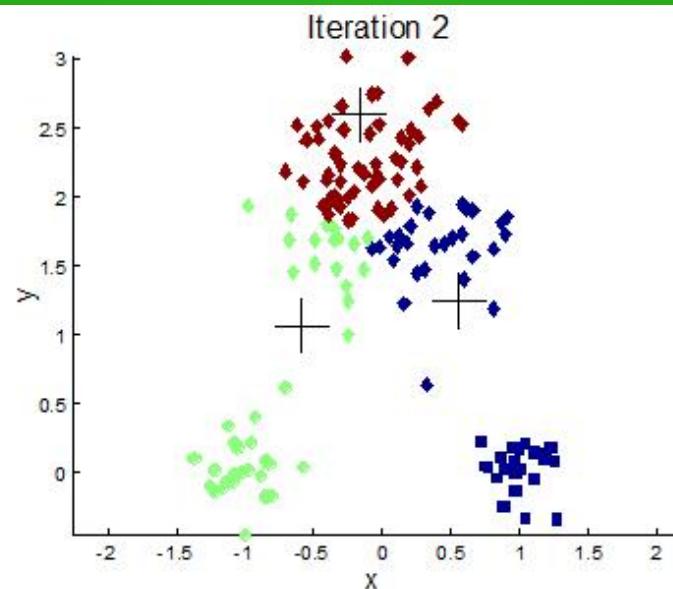
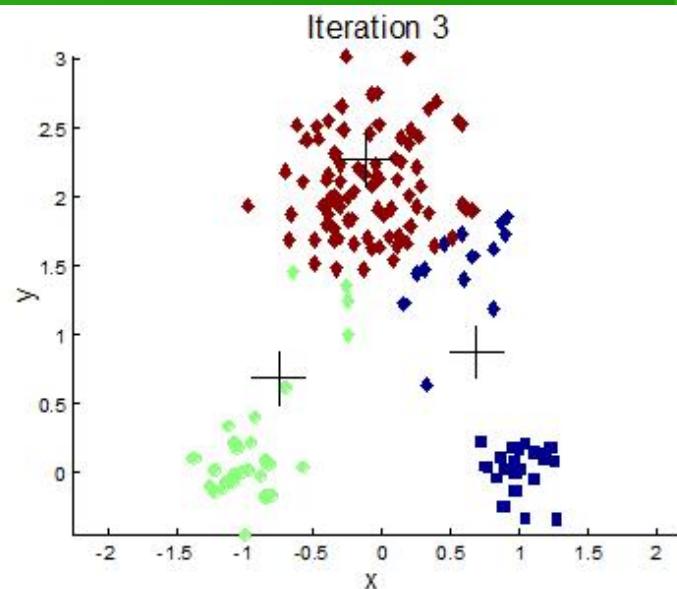
For the blue group of points, approximately where will the centroid move to?

## Step 4: Repeat steps 2 and 3 until done.

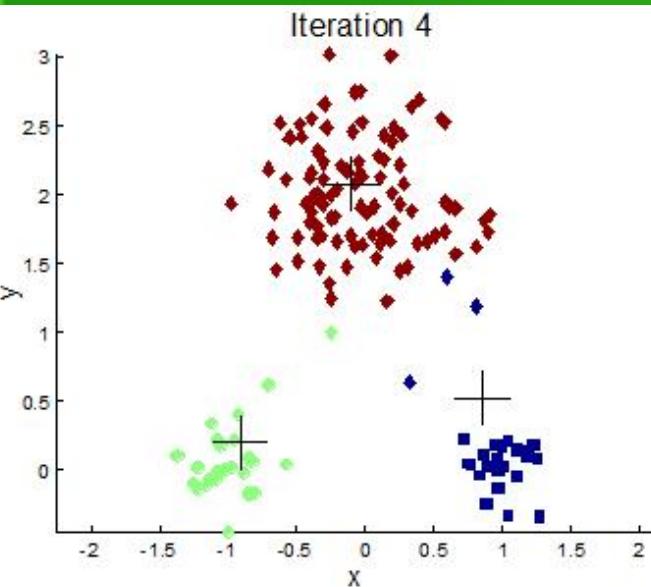
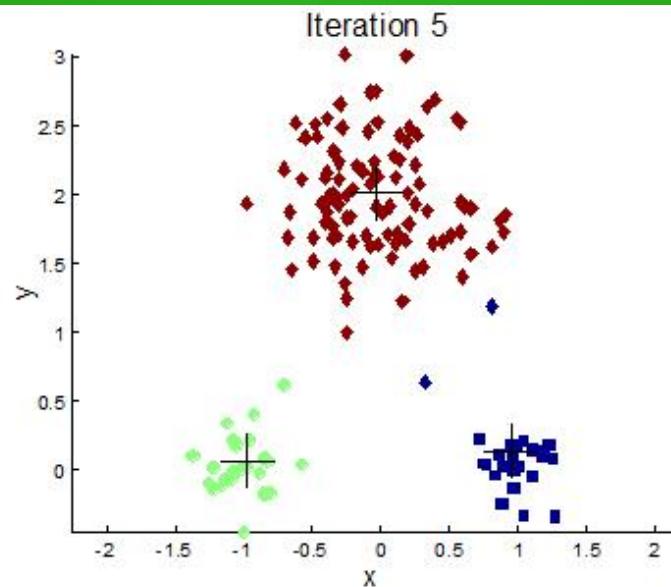
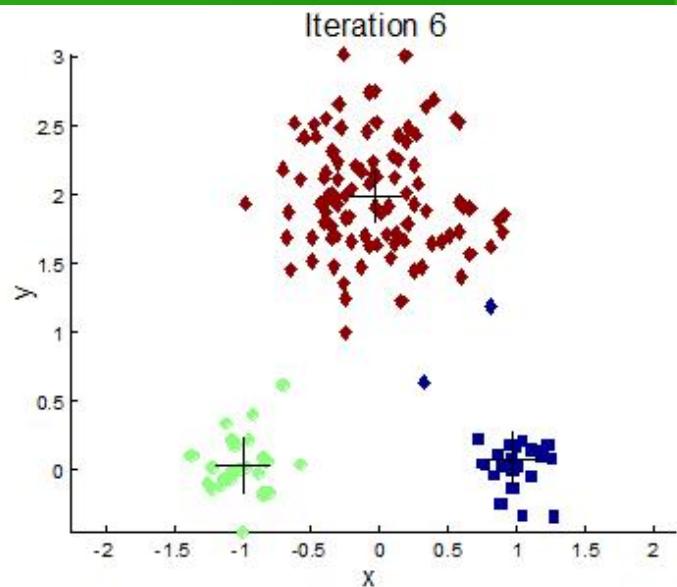
Done when:

- max number of iterations is reached, or
- centroids don't move (at all, or very much), or
- groups don't change (at all, or very much)

# k-Means Clustering Example



# k-Means Clustering Example



# Summary

- We described the clustering problem and the k-means algorithm, which solves this problem.
- **Next time:** We'll see that updating the centroids according to this algorithm reduces the cost with each iteration.

Cost( $\mu_1, \mu_2, \dots, \mu_k$ ) = total squared distance of each data point  $x_i$  to its nearest centroid  $\mu_j$