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1.1 The Wisdom of the Crowd

Suppose that you are a contestant on a game show. In order to win the prize — free tuition
at UCSD for one year — you must guess the height of the Geisel Library to within 10 feet.
You're unsure of the answer, but, luckily, you're allowed to poll the television audience
for their best guesses. Aggregating their responses is likely to produce a guess that is
more accurate than your own — a phenomenon known as the “wisdom of the crowd” ™

If you adopt this strategy, your next step is to decide how, exactly, to aggregate the
audience’s guesses. There are many approaches, but a natural one is to view aggregation
as compression. That is, you wish to find a single number 6 which is somehow represen-
tative of the data set. Of course, some information is lost by compressing a collection of
numbers into a single number, 6; naturally, you wish to choose 6 so as to minimize this
loss.

More formally, the information lost when a data point x; is represented by a different
number 6 can be quantified by choosing a loss function. You decide to use a popular
choice, the square loss:

Esq(xi, 9) = (xl- — 9)2

The smaller the value of /sq(x;,6), the better 6 is thought to represent x;. If you take the
position that a good representative of the data set is one which is, on average, a good rep-
resentative of each data point, then the goal of compression is to find a § which minimizes
the average square loss:

1 n
Lsq(0) = . Y lsq(xi,0).
i=1
This is a very important step on your way towards winning a year’s tuition: you
have transformed the vague strategy of aggregating the crowd’s guesses into a precise
computational problem:

GIVEN: Real numbers x1, ..., x;.
COMPUTE: A real number 6 minimizing the average square loss, Lgq.

Having stated the problem, your next task is to find an algorithm for producing the so-
lution. And since the television audience consists of thousands, if not millions of people,
each contributing one number to the data set, you will need to run your algorithm on the

1 https://en.wikipedia.org/wiki/Wisdom_of_the_crowd
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computer you have available to you. It should be able to produce its result in a reasonable
amount of time.

It is not too hard to code up a Python function for computing the value of Lsq given
some data and a particular 6:

def average_square_loss(theta, data):
total_loss = 0O
for x in data:
total_loss += (x - theta)**2
return total_loss / len(data)

You can use this function to try several different values of 6 in an effort to find that with
the smallest average loss. But there are infinitely? many real numbers to try, and checking
all of them is simply impossible. Your algorithm will have to be a bit more clever.

You remember that minimizing a function can often be done via calculus, and, coin-
cidentally, the loss function you have chosen is differentiable. To find the minimizer of
Lsq(8), you first take the derivative with respect to 6:

dLs d |1
B [n U’“l"")z] -

i=1

The derivative operator can be pushed inside of the summation:

=

4

P (Xl' — 9)2

_1
=,
1

I
—_
>

A careful application of the chain rule results in:

Dividing both sides by two:

2 An uncountable infinity.
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The summation can be split into two summations:
1¢ 1¢
== —) 0——) x,=0,
n Z n Z !
i=1 i=1
n 1 n
= —) 0=-) «x.

Since 6 is a constant, you can pull it out of the first summation:

ya=ly

= —) 1=-) x;

ni3 ni:ll
0 1&

:>£~n:£;xi.
11’!
:>9:*in.
hi3

In other words, L(6) is minimized by choosing 6 to be the mean, 1 Y | x;.

This little bit of calculus has turned a seemingly impossible computational problem
into an easy one. Instead of computing L(6) for every possible value of § and returning
that which produces the smallest value, we can compute the minimizer directly by com-
puting the mean. That is, the earlier computational problem is equivalent to the following;:

GIVEN: Real numbers x1, ..., x;,.
COMPUTE: Their mean, 1 Y, x;.

This computational problem has a straightforward algorithmic solution, coded in Python
below:

def mean(data):
nnpssume len(data) > 0."""
total = 0O
for x in data:
total += x
return total / len(data)

With this practical algorithm in hand, you have everything you need in order to aggregate
the audience’s guesses and estimate your way to a year of free tuition.

1.2 The Components of a Data Science Problem
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0) The objective.

The game show example of the previous section,
while simple, has all of the components of a typ-
ical data science problem. Such a problem starts
with a high-level objective. Above, the objective
was to predict the height of the Geisel Library as
accurately as possible. Other objectives might be
to determine whether an image contains a pedes-
trian, decide whether a new medical treatment is
effective, or to discover trends in how people move
around a city.

1) A formalization of the
objective as a computational
problem involving data.

2) An efficient algorithm
solving the problem.

1.2.1 The Computational Problem

777777777777777777777777777777

s . 1 3) An implementation of
Once the objective has been stated, there are typi- the algorithm at scale.

cally many approaches to reaching it. For instance, — +__-_Z2__ T T 7T .
one person might try to determine the height of

Geisel by imagining it next to a structure they do

know the height of, while another might rely on luck and take a random guess. The
strategy of the data scientist is to gather data and translate the objective into a precise
computational problem. In the previous section, we opted to gather guesses from the
audience and aggregate them by minimizing the average square loss.

There is typically no single way to go from a high-level objective to a precise computa-
tional problem, and the choices we make in this transition has major implications for the
feasibility of finding a solution and the quality of the outcome. As such, this step often
requires careful analysis. For instance, some thought shows that the square loss £sq(x;,6)
demands a high price for data points x; which are far from the proposed 0. As such, the
average square loss may be dominated by outliers. Practically, this means that if a mem-
ber of the audience is a very bad guesser (or worse, is malicious in their response), the
aggregated answer obtained by minimized the average square loss will be inaccurate. It
might be better, therefore, to pick a loss function that is less sensitive to outliers.

Probability and statistics are often used to translate an objective into a computational
problem. For example, we may assume that the guesses of the audience are random
variables following some probability distribution whose peak is located at the true height
of the Geisel Library. In this view, a natural computational problem is to use the data to
estimate the distribution and recover this peak. Furthermore, framing the problem as a
statistical one often allows us to compute confidence intervals — if the audience’s guess
comes with low confidence, we might decide to go with our own best guess instead.

Translating the objective to a computational problem is a crucial step in solving a data
science problem, and it is a major focus of DSC 40A. This course will mostly be concerned
with the components which follow.
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1.2.2 The Algorithm

The next component of the data science problem roadmap is an efficient algorithm which
solves the computation problem that has been posed. Making the leap from a problem to
an algorithm can involve several steps in itself:

Analyze the problem. By analyzing the problem, we hope to understand the nature of
solution in a way that helps us with designing or choosing an algorithm. The result of
this step is often the transformation of the original problem into an equivalent one that is
easier to solve. For instance, in the last section, we analyzed the problem of minimizing
the average square loss using calculus. We found that this problem has the same solution
as that of computing the mean of a data set.

Design an algorithm. Once we understand the nature of the problem’s solution, we
begin the process of designing an algorithm for computing it. For instance, knowing that
the mean minimizes the average square loss, there is an obvious algorithmic solution:
we loop over the numbers in the data set, cumulatively keeping track of their sum, and
finally return the sum divided by the size of the set. This is the algorithm implemented
by the Python code at the end of the previous section, but it should be noted that this is
not the only algorithm for computing the mean. In fact, the next section will investigate a
different algorithm which is in some ways superior.

The computational problem of computing the mean has a simple and straightforward
algorithm associated with it, but this is not always the case. When an efficient algorithm
is not so efficient, it is often helpful to try several algorithm design patterns. We will en-
counter some of these patterns, such as divide-and-conquer, in this course. Other strate-
gies, like dynamic programming, are outside of the scope of DSC 40B, but are maybe
worth studying independently — you might encounter them in an algorithms-focused job
interview.

Prove the algorithm’s correctness. The algorithm we listed above for computing the
mean is evidently correct, but the correctness of many algorithms is not so straightfor-
ward to assess. For instance, algorithms for sorting a list of numbers can become quite
complicated and their correctness can be difficult to prove. Case in point, Timsort, the
sorting algorithm used by Python and Java, was found to contain a logical error by a team
of computer scientists in 20157, over 13 years after it was first implemented. The Python
implementation of the algorithm only triggered the error for inputs of a very, very large
size (so large that such inputs were never seen), but the Java implementation of Timsort
on Android was susceptible to failure for certain lists whose size was as small as 65,536.

3de Gouw, Stijn; Rot, Jurriaan; de Boer, Frank S.; Bubel, Richard; Hahnle, Reiner (July 2015). "OpenJDK’s
Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case"
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We will develop one tool for proving the correctness of algorithms in the next section —
the loop invariant. Loop invariants are useful for not only proving that an iterative algo-
rithm does what we expect it to do, but also for understanding how the algorithm works.
This is important, since one of the most common approaches to designing an algorithm
is to modify an existing one — a task which is made possible only if we understand the
workings of the algorithm we're trying the modify.

Analyze the algorithm’s efficiency. In practice, the correctness of an algorithm alone
does not mean that it is useful — it must also be efficient. Therefore, once we have a correct
algorithm, we must analyze its usage of computational resources, including processor
time and memory. In the coming sections, we will introduce tools and a notation for
assessing the efficiency of algorithms.

An algorithm which takes a minute to run on a data set of 1,000 images may take
weeks (or longer) to run on a data set of 100,000 images. On such a large data set, this
algorithm is effectively useless, and we must return to the algorithm design step in order
to produce a faster algorithm. Improved performance often comes at the cost of using a
more complicated algorithm design pattern.

But sometimes, no matter how clever we are, we cannot find an efficient algorithm for
solving our computational problem. In fact, computer scientists have good reason to be-
lieve that some problems? are so hard that an efficient algorithm for solving them simply
does not exist. Moreover, these problems aren’t all that exotic — many of the computational
problems we might pose in data science fall into this group.

If it turns out that the computational problem itself is too hard to solve, we have sev-
eral options. First, we can go back and choose a different computational problem. It is
sometimes the case that an intractable computational problem becomes efficiently solv-
able after it is modified slightly. Ideally, the solution of the modified problem retains the
important properties of a solution to the original. Second, we may give up on trying to
find an exact solution, and settle instead for an approximate one. Even then, some problems
are so hard that it is thought to be impossible to efficiently approximate their solutions.

1.2.3 The Implementation and Beyond

Once the algorithm has been designed an analyzed, it must be implemented. In this sim-
plest case, this just means coding up the algorithm in a programming language, or even
carrying it with pencil and paper. In other cases, such as when we have a truly massive
data set, we must optimize our code and make infrastructure decisions which allow the
implementation to scale. This is by no means an easy task, and it is largely outside of the
scope of DSC 40B.

4For instance, the problems which are said to be “NP-Hard”.
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1.2.4 “Solving” a Data Science Problem

We have seen that a data science problem has several components: a high-level objective,
a formal computational problem, an algorithm, and an implementation. Solving a data
science problem consists in choosing each of these components. Of course, there are many
choices to be made: there is more than one way to formalize the objective, each with its
positives and negatives; any resulting computational problem may have many algorithms
which solve it; and there are many possible implementations of any one algorithm.

As a result, the landscape of solutions takes the form of a many-branching tree:

The Objective

Problem 1 Problem 2

Algorithm 1 Algorithm 2

Implementation 1 Implementation 2

If a solution to a data science problem is a path in this tree, a data scientist is someone
who is comfortable in navigating it. They are able to formalize problems, design and
assess algorithms, and implement them. Other disciplines have something to say about
each of these steps, of course. Statisticians specialize in posing the computational problem
and studying the nature of their solutions, computer scientists focus on designing and
analyzing algorithms, and engineers concentrate on implementation. In this view, a data
scientist is a generalist.

But such a generalist is necessary, because navigating this tree is rarely a linear pro-
cess. After trying and failing to find an efficient solution for a particular computational
problem, you might decide to solve a different problem altogether, moving back up the
tree and down a different branch. This new problem may formalize the same overarching
objective, but in a fundamentally different way. This is important to keep in mind, because
while solving a data science problem involves choosing a path down the tree, interpreting
the output of your solution involves walking back up the tree, back to the objective.

1.3 Correctness

Once we have formalized a computational problem involving data, we set about design-
ing an algorithm to solve it. At a minimum, we want our algorithm to be correct. One
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approach to assessing the correctness of an algorithm is to verify that is produces the cor-
rect output for each input in a small set of inputs called test cases. While certainly a good
practice for testing the implementation of an algorithm, this approach has a big downside:
it is always possible that some input results in the failure of your algorithm, but your test
cases do not include it. Instead, we are interested in proving that the algorithm produces
the correct output for every possible input.

Proving the correctness of an algorithm in this way has more than just academic ben-
efits — it forces us to understand how the algorithm works at a fundamental level. This is
important, since one of the main strategies we have for designing a new algorithm is to
modify an existing one — a process that is much easier if we thoroughly understand the
algorithm being modified.

1.3.1 Loop Invariants

Consider again the straightforward algorithm for computing the mean. The algorithm’s
Python implementation is shown below:

def mean(data):
nminpssume len(data) > 0."""
total = 0O
for x in data:
total += x
return total / len(data)

If we want to prove that this algorithm is correct, we need to show that its return value,
total / len(data), is indeed the mean of the numbers in data. We will assume that
Python correctly computes the number of items in data when len(data) is executed,
so proving the correctness of the return value boils down to proving that total does
actually contain the sum of all elements of data when execution reaches the last line of
the function. Of course, the value of total changes over the course of the function’s
execution, since it is computed iteratively inside a for-loop. Therefore, in order to prove
that total is computed correctly, we need to prove the correctness of the loop.

The primary tool we have for proving the correctness of a loop is the loop invariant.
As the name suggests, a loop invariant is a statement which is true before the loop ex-
ecutes and immediately after® every iteration. A useful loop invariant says something
about the value of an important variable once the loop exits. In this case, a useful loop
invariant tells us about the value of total:

Invariant 1. After the ath iteration, total contains the sum of the first & elements of data.

50r immediately before every loop — either way.



14 CHAPTER 1. INTRODUCTION

Remember that a loop invariant should also say something about the status of the
program before the loop executes, but the above invariant seems to only make a statement
about the status of the program after each loop. We have a clever way of getting around
this: Since the time immediately after iteration & — 1 is also the time right before iteration
«, we adopt the seemingly-strange convention that the time right before the first iteration
of the loop is also the time “immediately after zeroth iteration”. Therefore, plugging &« = 0
into the invariant results in a statement about the status total immediately before the
loop begins execution.

You may think of a loop invariant as a whole collection of statements, one for each
value of a, where « can be any iteration number ranging from 0 (i.e., before the first itera-
tion) to the total number of iterations. For instance, replacing a by 42 yields the statement:
After the 42nd iteration, total contains the sum of the first 42 elements of data. More
useful is replacing a by the total number of iterations, n. In this case, the loop invariant
tells us that “After all n iterations (i.e., immediately after the loop exits), total is the sum
of the first n elements of data (i.e., all of the elements)”.

Which iteration? When writing loop invariants (and discussing loops in general)
we must be careful to distinguish the mathematical variables from the implementation
variables; i.e., the ones that appear in the code. To see the potential for confusion,
consider the following question: What is printed on the ith iteration of

for i in range(10): print(i)?

Observe that the question involves two instances of the 9th letter in the English al-
phabet: i and i. The first instance, i, is a mathematical variable, while i is an imple-
mentation variable. We typically start counting from 1 in mathematics, so the first
iteration corresponds to i = 1. But on the i = 1 iteration, the implementation variable
i = 0. Continuing on, the ith iteration prints the value of i — 1. On the other hand,
if we confuse i and i, we are likely to say that the code prints i on the ith iteration.
To avoid this confusion, we will use Greek letters (like a) as mathematical variables,
since Greek symbols don’t usually appear in code.

1.3.2 Proving a Loop Invariant

Simply stating a loop invariant does not make it true — we must prove that the invariant
is indeed correct. And since we can think of a loop invariant as a collection of statements,
one for each value of «, it may seem as though we will have to prove each statement in
the collection individually. Luckily, we will soon learn a clever mathematical technique
for proving all of the statements in one fell swoop.

But to begin, let’s try proving all of the statements, one-by-one, starting with the state-
ment that results from taking a = 0. This statement reads: “After the zeroth iteration,
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total contains the sum of the first zero elements of data”. We understand that “the ze-
roth iteration” conventionally refers to the time immediately before the first iteration of
the loop. At this point in time, total has been initialized to zero. Again by convention,
the sum of zero elements is zero. Hence total is the sum of the first zero elements, and the
statement corresponding to @ = 0 is true. Since the “zeroth iteration” refers to the point
in time right before the initial iteration of the loop, proving this statement is referred to as
initialization.

Next we prove the statement corresponding to a = 1: “After the first iteration of the
loop, total contains the (sum of the) first element of data.” During the first iteration,
total is updated by adding x, which takes the value of the first element of data. From
proving the invariant for « = 0, we know that total enters the iteration with a value of
zero. Hence, during the first iteration, total becomes 0 + x = x, which is the first element
of data. This proves the statement corresponding to « = 1.

Next we prove the statement corresponding to & = 2: “After the second iteration of
the loop, total contains the sum of the first two elements of data.” On this iteration, x
takes the value of the second entry of data. The statement for « = 1 says that total enters
the second iteration as the sum of the first element of data. During the second iteration,
total becomes the sum of the first element of data and x, which is the second. Therefore,
at the end of the iteration, total is the sum of the first two elements of data, and so the
statement is proven.

We could continue on in this way, proving the statements for « = 3, « = 4, and so on.
But notice that the argument for « = 1 was nearly identical to the argument for « = 2;
the arguments for « = 3 and above will be very similar, as well. Instead of writing each
argument separately, we will write a single argument that works for any iteration number,
a, saving ourselves a ton of work.

Observe that a common feature of our arguments for « = 1 and & = 2 is that, in each
case, we use the value of total as it was at the end of the prior iteration. That is, we
used the statement about the zeroth iteration to prove the statement for the first iteration,
and we used the statement for the first iteration to prove the statement for the second. In
general, we will use the statement for the (« — 1)th iteration to prove the statement for the
ath.

We now do something clever: we take « to be some arbitrary iteration number between
one and the total number of iterations, and we assume that the statement for & — 1 is
true. We then use this assumption to prove that the statement for « is true, as well. This
is process is called maintenance, since it proves that the truth of the loop invariant is
maintained across an arbitrary iteration.

Here is what maintenance looks like for the current problem. First, we assume that
after the (a« — 1)th iteration, total contains the sum of the first « — 1 elements of data.
On the «ath iteration, total is updated by adding x, whose value is the ath element of
data. Hence total becomes the result of adding the ath element of data to the sum of the
first (x — 1) elements. This is just the sum of the first « elements. Therefore, at the end of
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the iteration, total will contain the sum of the first « elements of data, and the claim is
proven.

It may seem that we are being sloppy by assuming that the statement for the previous
iteration is true, but we can do this precisely because we have proven that the statement
for « = 0 is true during the intialization step above. Since the statement is true for « = 0,
our maintenance argument implies that it is true for « = 1. Since it is true for « = 1, we
can re-apply our maintenance argument to conclude that it is true for « = 2, and so on.
Once we prove initialization and maintenance, we set off a chain-reaction of proving, and
all of the statements, for every value of «, fall like dominoes®.

To recap, we can prove that a loop invariant is true via a two-step process:
1. Initialize: Show that the invariant holds before the first iteration of the loop.

2. Maintain: Prove that if the invariant holds after the (« — 1)th iteration, it will still
hold after the ath.

To then prove that the loop is correct, we then show that the loop terminates, and translate
the loop invariant to a statement about the status of the algorithm after the loop ends.
In this case, the loop clearly terminates after it has run through all n elements of data.
Substituting @« = n into the loop invariant, we find that “After the nth (last) iteration,
total contains the sum of the first n elements of data (i.e., all of the elements).” Thus, the
loop correctly calculates total.

1.3.3 A More Complicated Algorithm

We have shown that the above algorithm for computing the mean is logically correct:
when implemented on an idealized computer, it will indeed compute exactly the mean
for every possible input. But actual computers are not ideal; in particular, they can only
represent real numbers to a finite number of decimal places. One of the implications of
this finite precision is roundoff error, in which adding a large number and a small number
results in a loss of accuracy. You can see this for yourself by opening a Python interpreter
and writing
>>> lel6 + 1 - 1el6

Mathematically, the result of this calculation should be 1, of course. But Python — and any
other language using the standard implementation of floating point numbers — will give
a result of 0.

It turns out that — while the above algorithm is logically correct — the implementa-
tion can run into precision issues. In particular, the operation on line 5, total += x, can
incur roundoff error when total is very large and x is very small, or vice versa. In criti-
cal applications, a different algorithm is used for computing the mean — one which only

®You may have seen this style of proof before; it is known as (weak) mathematical induction.
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adds numbers which are likely to be on the same order of magnitude, thereby avoiding
roundoff error. The Python implementation of this algorithm is shown below:

def running_mean(data):
"nipssume len(data) > 0."""
current_mean = datal0]
count = 1
for x in datall:]: # datal[1], datalZ2],
count += 1
current_mean += (x - current_mean)/count
return current_mean

The logical correctness of this algorithm is not quite as obvious as that of the straight-
forward algorithm. We wish to show that the value of current_mean is indeed the mean
of the data when the algorithm ceases execution. But current_mean is iteratively com-
puted by a for-loop. Therefore, we will state and prove a loop invariant which will be
useful in proving the correctness of the algorithm as a whole.

Invariant 2. After the ath iteration of the loop, current_mean stores the mean of the first
&« + 1 elements of data.

Assuming for the moment that this loop invariant is true, we can use it to prove the
overall correctness of the algorithm; we simply need to argue that the loop terminates
after len(data) — 1 iterations. Since the loop iterates through each of the len(data) —1
elements of data[1:] in turn, this is indeed the case. Therefore, taking « = len(data) in
the loop invariant and doing some translation from mathematics into English, we obtain
the following: “After len(data) iterations of the loop, current_mean stores the mean of
the first len(data) elements of data (i.e., all of the elements).”

We prove the loop invariant by first initializing, then maintaining. To initialize, we
prove that the invariant is true before the execution of the loop begins. Plugging « = 0 into
the invariant, we obtain the statement: “After the Oth iteration of the loop, current_mean
stores the mean of the first 0 + 1 = 1 elements of data.” Looking again at the algorithm,
current_mean is initialized to be the first element of data in line 1. Since the mean of
one number is just that number, current_mean is indeed the mean of the first element
immediately prior to the first iteration of the loop. This proves initialization.

Next, we maintain. Let « € {1,2,3,...} be an arbitrary iteration number. We first
assume that the invariant holds after the (« — 1)th iteration (i.e., the previous iteration).
Plugging « — 1 into the loop invariant yields the statement: “After the (¢ — 1)th iteration
of the loop, current_mean stores the mean of the first (« — 1) + 1 = « elements of data”.
Taking this statement as true, we wish to prove that after one more iteration, the value
stored in current_mean will be the mean of the first « + 1 elements of the list.

Two things happen on each iteration. First, count is incremented by one. It is easy
to see that on the ath iteration, count is incremented from « to « + 1; if we wished to be
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rigorous, we could prove this with its own loop invariant. Next, current_mean is updated
according to the code

current_mean = current_mean + (x - current_mean) / count, (1.1)

where x takes on the value of the (« + 1)th element of the list.

We now introduce a bit of notation. For any t € {0,1,2,...}, let S; denote the sum
of the first t elements of data, where we define Sy to be 0 by convention. Note that the
mean of the first t elements of the list is then S;/t. We have assumed that after the (a« —
1)th iteration, current_mean holds the mean of the first a elements of the list. That is,
current_mean = S,/a. Using this piece of knowledge, along with the fact that count =
« + 1, the right hand side of Equation [Tl becomes:

Sa S 1

w T (X zx) PEL
Our goal is to show that this is equal to the mean of the first « 4- 1 elements of the list,
Su+1/ (a + 1). Collecting the terms involving S,, we find:

1 Sy X
1-— — .
< 1x+1> (x+1x+1

Noting that (1 —1/(a + 1)) = a/(a + 1), we see that the above is equal to:

o & x  Spq1+x
a+1 « a+1 a+1

Since x is the (a + 1)th element of the list, Sy +x = S,+1, and the above is simply
Sar1/(a+1), as desired. This proves the maintenance step.

Together, initialization and maintenance prove the loop invariant. We next show that
the loop terminates. This simple for-loop clearly exits after len(data) - 1 iterations.
Therefore, we use the loop invariant to conclude that “After len(data) iterations of the
loop, current_mean stores the mean of the first len(data) elements of data (i.e., all of the
elements).” That is, the algorithm is correct.

1.3.4 Nested Loop Invariants

Consider Algorithm 0 which computes the mean of an n x n array of numbers in the
straightforward way. In order to prove its correctness, we want to show that total con-
tains the sum of all entries of the array at the end of the algorithm’s execution. As before,
total is computed iteratively by a for-loop, and so proving the correctness of the algo-
rithm as a whole depends upon proving the correctness of a loop, which is precisely what
we use loop invariants to do.
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Algorithm 1 Computing the mean of an array.

def array_mean(arr):

"""Compute the mean of an n-by-n array of numbers."""
total = O
n = len(arr) # the number of rows in the array
for i in range(n):

row_total = 0

for j in range(n):

row_total += arr[i, j]

total += row_total

return total / nx*2

In this case, however, we have two loops: an inner loop over j and an outer loop? over
i. As such, we will have two loop invariants, one for the inner loop and one for the outer.
We begin by stating a loop invariant for the outer loop:

Invariant 3. After the ath iteration of the outer loop, total contains the sum of the ele-
ments of the first & rows of arr.

As before, proving the loop invariant involves an initialization step and a maintenance
step. In the maintenance argument, we assume that after the (a — 1)th iteration of the
outer loop, total contains the sum of the elements of the first « — 1 rows of arr, and we
wish to show that after another iteration it contains the sum of the first « rows. Looking
back at the algorithm’s code, total is updated at the end of each iteration of the outer
loop by adding row_total to it. Evidently, row_total should contain the sum of the ath
row of the array. Since row_total is computed by the inner loop, we need to prove a
second loop invariant:

Invariant 4. After the Bth iteration of the inner loop, and during the ath iteration of the
outer loop, row_total contains the sum of the first § elements of the ath row of the array.

To initialize, we argue that before execution of the inner loop, row_total is set to 0
and therefore contains the sum of the first § elements of the ath row (since the sum of an
empty set of numbers is by convention 0). To maintain, we assume that after the (g — 1)th
iteration of the inner loop during the ath iteration of the outer loop, row_total contains
the sum of the first f — 1 elements of the ath row. On the Bth iteration of the inner loop, j
has value B — 1. Hence we add arr[a-1, B-1] to row_total, which we recognize as be-
ing the Bth element of the ath row of the array. As a result, after this iteration, row_total
contains the sum of the first B elements of the ath row.

7Remember that in this situation, the inner loop will iterate from 0 to 1 — 1 for every iteration of the outer
loop.
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At this point we have proven the loop invariant for the inner loop, now we need to
use it. The second loop makes 1 executions. After the nth iteration, the loop exits and the
loop invariant reads: “row_total contains the sum of the first n elements of the ath row
of the array.” In other words, it contains the sum of the ath row.

We can use this fact to prove the loop invariant for the outer loop. To initialize, we
recognize that before the execution of the outer loop, total is 0 as desired. To maintain,
we assume that after the (« — 1)th iteration, row_total is the sum of the first « — 1 rows of
the array. The loop invariant for the inner loop tells us that at the end of the ath iteration,
row_total is the sum of the elements in the ath row of the array. Since we add row_total
to total at the end of each iteration of the outer loop, after the ath iteration total is the
sum of the first « rows of the array.

This proves the outer loop invariant. Since the outer loop also runs 7 times, the loop
invariant tells us that after the loop executes, total is the sum of the first n rows of the ar-
ray, i.e., all of the rows of the array. Since we return this total divided by 12, the correctness
of the algorithm has been proven.

1.4 Efficiency

Once we have shown that an algorithm is correct, we must then analyze the computation
resources it uses. An algorithm that is guaranteed to produce the correct result is useless
if it requires an impractical amount of time or memory to do so. In this section, we will
develop tools for assessing the efficiency of algorithms.

1.4.1 Time Complexity Analysis

Suppose that you and I both have our favorite algorithms for computing the mean, and I
claim that my algorithm is faster. To settle the matter, we each implement our algorithms
on our own computers and time their execution on the same benchmark data set. While
a good first test of performance, this approach has some serious flaws. For instance, my
computer might be faster or slower than yours, which makes any absolute timing hard to
interpret. If we find that your algorithm takes 1 second on your laptop but my algorithm
takes 0.1 seconds on my lab computer, it may just be that my computer is faster. We still
don’t know whether mine is a good, efficient algorithm.

Of course, it would be more fair to run both of the algorithms on the same computer.
While better, this doesn’t quite solve the problem. First, some algorithms are better suited
to some hardware configurations than others. For example, maybe my algorithm is fast
when run on the GPU in my computer, but significantly slower on computers without a
GPU. Second, some algorithms are fast on certain inputs and slow on others. If we find
that the your algorithm is slower, how can we be sure that it’s slower in general, and not
just on that particular input? Lastly, some algorithms have a lot of overhead and are slow



1.4. EFFICIENCY 21

to start, but become relatively efficient when their input becomes bigger. Perhaps your
algorithm is slower than mine when run on an input of size 100, but faster than mine
when run on an input of size 1000.

In short, we want a method of assessing the speed of an algorithm that captures the
properties of the algorithm itself, and not the computer on which it is run. Moreover, we
are less concerned with the exact time it will take an algorithm to run, and instead wish to
describe the performance in relative terms as a function of the size of the input. We do this
by reasoning about the pseudocode of the algorithm in a process called time complexity
analysis.

1.4.2 The Time Complexity of Computing the Mean
Recall the straightforward algorithm for computing the mean:

def mean(data):
total = 0O
for x in data:
total += x
return total / len(data)

How long will this algorithm take to run when called on a list with 1 elements?

Our strategy will be to analyze the algorithm line-by-line to estimate the time each line
takes to run; we will then add these estimates to obtain an estimate of the total time of ex-
ecution. Consider, for example, the first line of the algorithm: total = 0. This operation
of assigning zero to a variable takes different times on different computers, but note that
the time it takes will not depend on #, the size of the input list. We don’t have to decide
on the exact time it takes for now; let’s just assume that it takes a constant amount of time
ci. Later, when I run the algorithm on my computer or on your laptop, I can measure c;
for that specific machine and fill it in here.

Let’s do the same for return total / len(data). Here we are dividing a number
by the size of a list and returning the resulting number. While it may appear as though
the time it takes to compute the length of the list becomes bigger the more elements the
list has, this depends on the implementation of the data structure. Python’s 1lists keep
track of their size as they grow or shrink, so that asking for 1en (numbers) doesn’t depend
on how many numbers are actually stored in the list.® Because of this, we can say that
this line takes time ¢, to execute, where it is understood that c; is a constant — it does not
depend on the size of the input list.

Next, consider the for-loop portion of the algorithm:

for x in data:
total += x

8The alternative, for example, is that Python would need to iterate through the list to count the number of
entries, which would take more time the longer the list.
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The big difference between these lines of code and the previous lines is, of course, that
those lines ran only once, while these lines will run a number of times which depends on
the size of the input list data.

Let’s put aside the first line for a moment and start with total += x. This step does
addition and assignment. The time it takes to run once does not depend on n, the size
of the input list. Let’s say that one execution of this line takes time c4. The body of the
for-loop runs once for each element in the list for a total of n times. Therefore, the total
time contributed by this line to the run time of the algorithm as a whole, summed over all
iterations, is ¢4 - 1.

Now let’s go back and consider the first line: for x in data:. Python does a lot of
work in this line, and it isn’t all visible to us. Namely, it asks for the next entry of the
list (checking to make sure there is one) and assigns the result to x. Let’s say that the
time that it takes to do this process once is c3. How many times does this process happen
during the execution of the algorithm? One might guess that the answer is 7, the size of
the list. It actually happens n + 1 times. This is due to how iteration works in Python
(and indeed, in most languages): Python keeps asking for the next element of the list until
the list responds that there are none left. On the nth ask, the list happily returns the nth
element. It isn’t until the (n + 1)th ask that the list says that it has no more elements to
give and the loop terminates. This issue of whether the line runs n times or n 4+ 1 may be
rather subtle at first, but luckily it won’t matter too much in the end.

The below table gathers the time it takes to run each line once as well as the number
of executions of each line:

Time per exec. Number of execs.
def mean(data):

total = O 1 1

n = len(data) C 1

for x in data: c3 n+1
total += x C4

return total / n Cs 1

To find the total time it takes to run the algorithm, we multiply the time it takes to run
each line once by the number of times that line is run, and sum these up. That is, the time
T(n) to run on an input of size n is:

T(n)=ci1+co+c3(n+1)+cs-n+cs,
c3-n-+cg-n+c1+co+c3+cs,
= (c3+cy)n+(c1+co+cs+cs),
=cn+c,

where in the last line we have defined ¢ = ¢3 + ¢4 and ¢’ = ¢1 + ¢ + ¢4 + cs.
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1.4.3 Scalability and Big-Theta

Now we could go measure cy, ¢y, ..., c5 on an actual computer to come up with a formula
for the algorithm’s run time on that machine — but this isn’t typically all that useful. What
is useful, however, is the observation that the above formula is a linear function of n.
Importantly, this tells us that — no matter what computer we use — the algorithm will take
roughly twice as long if we double the input size (when the input is large enough). To see
this mathematically, look at the ratio:

_ 2cen+(
en+c’
_ 2cn c
a cn+c’+cn—|—c"

T(2n)/T(n)

/

When n is large, the first term is approximately two, whereas the second term is small.
Hence T(2n) ~ 2T(n) when n is big.

The time scalability of an algorithm refers to how the time it takes to run grows with
the size of the input. Scalability is a major concern for data scientists because of the large
size of the data sets we encounter. For small data sizes, even an algorithm that scales
poorly will run in a reasonably amount of time. But as the size of the data set increases,
that same algorithm may start to take too much time to be usable. Our algorithm to com-
pute the mean scales linearly, which means that doubling the size of the input roughly
doubles the time it takes to run. But we will soon see algorithms which do not scale
linearly, and so that doubling the input size leads to larger increases in run time.

When comparing algorithms, we often care more about how each algorithm scales
with the size of the input rather than the precise value of the constants involved in the
calculation of its running time. The time complexity of an algorithm is an expression
of its efficiency with constants and lower-order terms dropped. We often write the time
complexity of an algorithm using the so-called ®-notation (pronounced: “big-theta nota-
tion”). We will see the formal definition of ®-notation shortly, but for now it suffices to
understand it as a notation which ignores constant factors and lower order terms. In the
case of the algorithm above, we saw that the run time was T(n) = cn + ¢. © ignores the
factor of ¢ and the lower-order term ¢, so that we can simply write T(n) = @(n). If we
had instead found that T(n) = an® + bn + ¢, we could have written T(n) = ©(n?).

1.4.4 Nested Loops

The algorithm above had a single for-loop which iterated over all of the n data points,
resulting in a linear time complexity. Now consider the straightforward algorithm for
finding the mean of an n x n array of numbers shown in Algorithm 0 and reproduced
below for convenience:
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def array_mean(arr):

"""Compute the mean of an n-by-n array of numbers."""
total = O
n = len(arr) # the number of rows in the array
for i in range(n):

row_total = 0

for j in range(n):

row_total += arr[i, j]

total += row_total

return total / n¥*2

We would like to compute the time complexity of this algorithm. As before, we could
construct a table detailing the time it takes for each line of the algorithm to run and the
number of times it is executed. However, since we often do not care about the precise
constants or lower-order terms involved in the expression for the running time, we can
afford to be a little “sloppy”. Intuitively, instead of analyzing each line of the algorithm,
we need only find the segment of code which contributes the highest-order term to the
running time calculation; this line determines the time complexity of the algorithm as a
whole.

Looking at the above code, we see that each line takes only a constant amount of time
per execution. Put another way, if we timed a single execution of total = 0, the time
would not change if we made the input array arr bigger or smaller. This is true for every
line of the algorithm — what differs between lines is how many times each is executed.
Since ®-notation ignores constant factors and lower-order terms, it suffices to find the
line which is executed the greatest number of times.

Remember that arr is an n X n array. Let’s calculate the number of executions of each
line as function of n. Anything that isn’t in a for-loop runs once, no matter what 7 is. The
body of the outer for-loop runs n times. The outer for-loop’s first line, for i in range(n):
actually runs n + 1 times, since on the (n + 1)th iteration it discovers that there are no
more entries and it must exit. The body of the inner loop runs n times for each iter-
ation of the outer loop, and hence runs n? times in total. The inner loop’s first line,
for j in range(n):, runs n + 1 times for each iteration of the outer loop, and hence
runs n(n + 1) times in total. These results are summarized in the table below:
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Number of execs.
def array_mean(arr):

total = 0 1
n = len(data) 1
for i in range(n) n+1
row_total = 0 n

for j in range(n): nn+1)
row_total += arr[i, j] n?

total += row_total n
return total / n**2 1

The line that runs the most number of times is the first line of the inner loop — it is
executed n(n + 1) = n? + n times. Therefore, n? is the leading power of 7 in the total
runtime of the algorithm, T(n). Hence we say that T(n) = ©@(n?), i.e., the algorithm
has quadratic time complexity. Note that the line that is executed most runs n(n + 1)
times, whereas the body of the inner loop runs n? times. Both are @(nz), and so it doesn’t
actually matter that for j in range(n): runs n times more: that n is ignored by ©.

A common mistake is to believe that any algorithm involving two loops, one nested
inside the other, must necessarily take quadratic time, but this is not the case. For instance,
consider the artificial example below:

def nested_algorithm(data):
for x in data:
for y in range(4):
print(x * y)

Supposing that data has n elements, the above takes time ©(#). This is because the body
of the inner loop runs a fixed number of times per each iteration of the outer loop. The
line which is executed the most is the second for-loop; it runs (4 + 1)n = 5n times in
total. After forgetting constants and lower order terms, this results in T(n) = ©(n).

1.4.5 Nested Loops with Dependent Ranges

Recall that an n x n array is symmetric if its entries are mirrored over the diagonal; that
is,arr[i, j]l = arr[j, il.For example, the below array is symmetric:

arr = [
[o, 1, 2, 31,
(1, 4, 5, 6],
(2, 5, 7, 8],
[3, 6, 8, 91,
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To compute the mean of a symmetric array, we could, of course, use the function
array_mean given above. But this function seems somewhat suboptimal: its nested loops
total the entries of the array by iterating over all of its elements, whereas about half of the
elements of a symmetric array are duplicates. A more efficient approach is to compute
the total by iterating over only those elements of the array which are along or to the right
of the diagonal. We count each diagonal element once, but an element arr[i,j] (j > i)
to the right of the diagonal should be counted twice in order to account for its “twin”
element arr[j,i] which will not be iterated over. The below code implements this idea:

def symmetric_array_mean(arr):

"""Compute the mean of an n-by-n symmetric array."""
total = 0
n = len(arr)
for i in range(n):

total += arr([i, i]

for j in range(i+l, n):

total += 2 * arr[i, j]

return total / nx*2

This algorithm involves a nested loop, but one which differs in a significant way from
the nested loop in array_mean: the range of the inner loop depends on the outer loop’s
progress. It is because of this that symmetric_array_mean is able to loop through fewer
elements of the array as compared to array_mean, and is therefore a faster algorithm.
But is symmetric_array_mean significantly faster in the sense that it has a smaller time
complexity than array_mean?

To answer this question, we first observe that each line of the algorithm takes constant
time per execution. Therefore, determining the time complexity of the algorithm as a
whole boils down to counting the number of executions of the line which is executed the
greatest number of times, asymptotically. Intuitively, this will be the body? of the inner
loop, Line B.

During different iterations of the outer loop, Line B runs a different number of times.
For example, suppose symmetric_array_meanis runona4 x 4 array. On the first iteration
of the outer loop, i = 0, and so the inner loop iterates over the range range (0+1, 4) =
range (1,4). There are three elements in this range: 1, 2, and 3. Hence Line B executes 3
times. However, on the second iteration of the outer loop, i = 1, and so the inner loop
iterates over the range range(1+1, 4) = range(2,4). There are only two elements in
this range, and so Line B executes twice. If we continue on in this way, we will see that

91t turns out that Line B is not the line which is executed the greatest number of times; this distinction
goes to Line @. During any given iteration of the outer loop, Line @ runs one more time than Line B in order
to check the loop’s exit condition. As mentioned previously, we can safely ignore this extra iteration when
working with ®-notation.
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Line B executes once on the third iteration of the outer loop, and doesn’t execute at all on
the fourth iteration of the outer loop. In general, during the ath iteration of the outer loop,
Line Bruns n — a times.

The outer loop iterates n times. Therefore, the total number of executions of Line B is
the sum of n — g, for a ranging from 1 to n:

m—1)+n—-2)+...+n—n-2)+(n—(m—-1))+(n—n).
a=1 a=2 a=n—2 a=n—1 a=n

Simplifying:
m-1)+mn—-2)+...+ 2 + 1 + 0 .
a=1 =2 a=n—2 a=n-—1 a=n
That is, the total number of executions of Line B is the sum of the first # — 1 natural num-
bers, starting with 1 and ending at n — 1. The sequence (1,2,3,...) is called an arithmetic
sequence, and the sum of the first n elements, S,, can be computed via a famous formula:

nin+1
Sn: (2 >.

Of course, we want the sum of the first n — 1 elements. Substituting n — 1 in for n, we

find:
s _m=D((r-1)+1) _(n-Dn
n—1 5 > ,

and so Line B executes n(n — 1) /2 times.

The time complexity of the algorithm as a whole is determined by the number of ex-
ecutions of Line B. Observe that n(n — 1)/2 = ®(n?). Therefore, the time complexity of
symmetric_array_meanis ®(n?), which is the same as the time complexity of array_mean!
This isn’t to say that symmetric_array_mean isn’t more efficient than array_mean; in fact,
it is about twice as fast. Therefore, it is important to keep in mind that time complexity
alone does not tell us everything there is to know about an algorithm’s performance.

1.5 Big-O and Friends

We have so far used an informal definition of the ®-notation. We now formalize ® and
introduce a few related notations that are frequently used to discuss the efficiency of al-
gorithms.

1.5.1 Big-©

For the following definition, recall that INT is the set of all positive natural numbers, i.e.,
N={1,23,...}.
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Definition 1. Let ¢(n) be a function. We write ®(g(n)) to denote the set of all functions
f(n) for which there exist positive real numbers ¢, ¢ and an np € IN™ such that for all
natural numbers n > ny,

0 <cig(n) < f(n) < cag(n).

There is a lot to unpack in this definition. Let’s start with some examples:

Example 1. Suppose I am the gatekeeper of the set @(n2), and you come to me with your
favorite function, f(1n) = 3n? + 4n. In order to gain membership into @(1?), you will have
to prove that f(n) satisfies the above definition.

To begin, you note that the definition involves both an upper and lower bound. We’ll
start with the lower bound. You point out that for any n > 0, 3n% 4+ 4n > 3n?. So, letting
¢ = 3, we have that f(n) > cin? for any n > 0.

Now you tackle the upper bound. You write down:

3n® + 4n < c2n2

and say that you will find a positive real number c; such that the above holds for large
enough 7. You start by dividing both sides by 7, since we can assume that it is greater
than zero:

3n+4 < con.

Gathering like terms:
(cp—3)n > 4.

You point out that if c; = 4, we have:
(c2—=3n=(4-3)n=n.

Hence, for any n > 4, it is the case that (c; — 3)n > 4. This proves that f(n) < 4n? for all
n>4.

You have shown that f(n) > 3n? for all n > 0, and also that f(1n) < 4n? for all n > 4.
Putting these two together, you have proven that:

3n? < f(n) < 4n?
for all n > 4. This proves that f(1) belongs in ©(n?).

Example 2. It’s a different day and you have a new favorite function: f(n) = 313 — 50n +
42. Let’s prove that it belongs to @(n?).

First, we will find a lower bound. When we do this, we can get rid of any part of
f(n) that is clearly positive to simplify our work. For example, f(1n) = 3n> —50n + 42 >
313 — 50n for all n > 0. Now we want to find a constant ¢; such that 313 — 501 > ¢yn° for
large enough n. Dividing both sides by n and collecting like terms, we get:

(3 —c1)n® > 50.
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Our task is to find ¢; and 7 satisfying this. We don’t want ¢; to be bigger than 3, because
then the left hand side will be negative for every n > 0, and it is very hard (impossible,
even) to show that a negative number is greater than 50. So take c¢; to be your favorite
number between 0 and 3, say, 1. Then the above is satisfied whenever

(3 —1)n* > 50,

that is, when 21> > 50 or n > /25 = 5. Hence f(n) > n® foralln > 5.

Now let’s prove an upper bound. To make things easier, we first realize that f(n) =
3n3 —50n +42 < 3n® +42foralln > 0, since —50n is a non-positive quantity for alln > 0.
Now we wish to find a constant ¢, such that

3n° + 42 < czn3
whenever 7 is large. Gathering like terms, we have:
(ca —3)n> > 42.

We can take ¢, to be whatever we’d like, as long as the left hand side is positive. Let’s pick
45, since it makes the math easier. Then:

(45 — 3)n® > 42,

i.e., 4213 > 42. This is true for every n > 1. Hence f(n) < 42n% foralln > 1.
Putting the upper and lower bound together, we find that

n® < f(n) < 4213
for all n > 42. This shows that f (1) is a member of @(n?).

Example 3. Is f(n) = 51 a member of @(n?)? It is not: we can prove the upper bound,
but not the lower. To see this, suppose there is a constant ¢ such that 51 > cn? for large
enough n. Dividing both sides by n, we get 5 > cn for all n large enough. But this cannot
hold for large n, since the right hand side grows to co.

Curiously, while ®(g(n)) is a set of functions, we do not use set notation to denote
that f(n) isa member of @(g(n)). That s, instead of writing f(n) € ©(g(n)), we typically

write f(n) = ©(g(n)).

1.5.2 Big-O

Writing f(n) = ©(g(n)) provides upper and lower asymptotic bounds for f(n). How-
ever, in some cases, we may not have (or need) a lower bound. In such cases, we can use
big-O notation:
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Definition 2. Let ¢(n) be a function. We write O(g(n)) to denote the set of all functions
f(n) for which there exists a positive real number ¢ and a positive natural number n¢ such
that for all n > ng,

0< f(n) < cg(n).
O-notation provides an upper bound, but not a lower bound. Compare this to ©-

notation, which provides both. As a result, if f(n) = ©(g(n)), then f(n) = O(g(n)),
too.

Example 4. Let f(n) = 3n? + 4n. Then f(n) = O(n?). To prove this directly it is sufficient
to use the upper bound from Example .

On the other hand, if f(n) = O(g(n)) it isn’t necessarily ©(g(n)), as the following
counterexample demonstrates.

Example 5. Let f(n) = 5n. Then f(n) = O(n), but it is also true that f(n) = O(n?). In
fact, 5n < 5n? for all n > 1, which shows that f(1) = O(n?). But, as shown in Example B,
f(n) is not a member of O(n?).

1.5.3 Big-(Q)
On the other hand, if we only want to provide a lower bound, we can use ()-notation:

Definition 3. Let g(n) be a function. We write )(g(n)) to denote the set of all functions
f(n) for which there exists a positive real number ¢ and a positive natural number 7 such
that for all n > ny,

0 <cg(n) < f(n).

Example 6. 31 +4n = Q(n?). To show this we can use the same lower bound as in
Example . But, simultaneously, 3n? + 4n = Q(n), since 3n* 4+ 4n > n for alln > 0.

1.5.4 Properties

The ®-notation has a useful property that helps simplify the time complexity analysis of
algorithms:

Theorem 1. If fi(n) = ©(gy(n)) and fa(n) = O(ga(n)) then fi(n) + fa(n) = O(g(n)),
where for every n the function g is defined by ¢(n) = max(g1(n), g2(n)).

Proof. Since f1(n) = ©(g1(n)), there exist positive real numbers a1, f; and a positive
natural number 1 such that a1g1(n) < fi(n) < B1g1(n) for all n > ny. Similarly, there
exist positive real numbers ay, B, and a positive natural number 1, such that ayg»(n) <
f2(n) < Boga(n) for all n > ny.

We wish to show that f(n) = f1(n) + f2(n) is©®(g(n)), where g(n) = max{g1(n),g2(n)}.
For this, we must prove both an upper and a lower bound. We start with the upper bound.
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Using the fact that f1(n) < p1g1(n) forall n > ny and fo(n) < Bag2(n) for all n > ny, we
have:

fi(n) + fo(n) < B1g1(n) + Baga(n), for all n > max{ny,ny}

Our goal is to get the right hand side to look like c max{gi(n), g2(n)}, where c is some
constant. A first step is to get it to look like c(g1(n) + g2(n)). To this end, define f =
max{p1,B2}. Now B1 < Band B, < B, so:

< Bgi(n) + Bga(n),
= B(g1(n) + g2(n)),

Now, recall that g(n) = max{g1(n), g2(n)}. Hence g1(n) < g(n) and g2(n) < g(n), hence:

< B(g(n) +g(n)),
= 2Bg(n).

Thatis, f1(n) + f2(n) < 2Bg(n) for all n > max{ny,ny}.
Now we need to prove the lower bound. We have from the fact that f1(n) = ®(g1(n))
and f>(n) = ©(g2(1)):

fi(n) + fa(n) > w191 (n) + axga(n), for all n > max{ny,ny}.

Define « = min{ay, a2 }. Then:

> ag1(n) +ag2(n),
=a(g1(n) +g2(n)).

Can we say that g1(n) + g2(n) > g(n) = max{g1(n),g2(n)}? Indeed we can. Observe
that for any particular value of , either g;(n) or g»2(n) is the max, and we can replace it
by g(n). Suppose (without loss of generality) that ¢1(n) = g(n) = max{gi1(n), g(n)}.
Then g1(n) + g2(n) = g(n) + g2(n) > g(n). Hence, in general, a(g1(n) + g2(n)) > ag(n)
for all n > max{ny, ny}.

We have shown both lower and upper bounds. That is, for all n > max{ny,n2},

ag(n) < fr(n) + f2(n) < 2Bg(n).
Therefore f1(n) + fo(n) = O(g(n)). O

How does this help us analyze the time complexity of algorithms? Suppose I have
two functions, foo(n) and bar (n). foo(n) takes @(n?) time, whereas bar (n) takes @ (1)
time. A third function, baz(n), simply calls foo and bar in series:
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def baz(n):
foo(n)
bar (n)

The time it takes for baz to run is clearly Tya, (1) = Tioo(1) + Tpar(n). Since Tioo =
@(n?) and Ty, = O(n), the above theorem tells us that

Toaz (1) = @(max{n?,n}) = O(n?).

In this situation, foo is often called the bottleneck of the algorithm, since it dominates the
time complexity. If we could somehow get rid of foo, baz would immediately become a
linear-time algorithm.

Similar results hold for O-notation and ()-notation:

Theorem 2. Let g(n) = max{fi(n), fo(n)}. Then:
L if fi(n) = O(g1(n)) and f>(n) = O(g2(n)), fi(n) + f2(n) = O(g(n));
2. if fi(n) = Q(g1(n)) and fr(n) = Q(g2(n)), fi(n) + f2(n) = Q(g(n)).

The proofs are similar to the last proof above.

1.6 Brute-Force Algorithms

Having so far developed the tools for assessing the correctness and efficiency of algo-
rithms, we now turn to the problem of designing them. There are many algorithm design
paradigms, and we will explore several in the coming chapters. In this section, we will
consider what is arguably the most straightforward strategy: brute-force search. We will
see that while the algorithms resulting from this strategy are typically easy to implement
and obviously correct, they are often so inefficient that they are useless for all but the
smallest and easiest problems.

1.6.1 Search Problems and Optimization

The brute force strategy can be used to design algorithms for solving what are known as
search problems. In this type of problem, the goal is to find an object which satisfies a
certain criterion. The object is assumed to come from a set of possible solutions called
the search space. The search space may be finite or infinite; if it is finite, the brute-force
approach to solving the problem is to systematically check each possible solution until a
valid solutions is found. A textbook example of a brute force search is attempting to break
into a safe by trying all of the possible keypad combinations. Clearly, this might take a
while!



1.6. BRUTE-FORCE ALGORITHMS 33

Algorithm 2 Brute-force optimization algorithm.

def brute_force_minimize(objective_function, search_space):

nnn

Minimize an objective function through brute force.

Arguments
objective_function

A callable implementing the function to be minimized.
search_space

A finite iterable which will be searched for the minimizer.

nnn

min_value = float('inf') # Python for "oco"
min_theta
for theta in search_space:
value = objective_function(theta)
if value < min_value:
min_value = value
min_theta = theta
return min_theta

None

An optimization problem is a special type of search problem which is often encoun-
tered in data science. In these problems, the goal is to find an element of the search space
which minimizes (or maximizes) an objective function quantifying the quality of a so-
lution. We have seen one optimization problem already: that of minimizing the average
square loss, Lsg. In that problem, the search space was the set of all real numbers, and
Lsq was the objective function. Other examples of optimization problems in data science
include least squares regression (where the search space is the set of all linear functions,
and the objective function is the sum-of-squared-errors) and k-Means clustering (where
the search space is the set of all sets of k cluster centers, and the objective function is the
sum of squared distances to the nearest cluster center).

If an optimization problem’s search space is finite, we may once again use the brute
force strategy to solve it. The first step is to design an algorithm for evaluating the objec-
tive function; what this algorithm looks like depends on the problem at hand. The next
step, however, always looks the same: we evaluate the objective function on each element
of the search space and return the minimizer (or maximizer). The algorithm for minimiz-
ing the objective function is shown in Algorithm D. This algorithm is straightforward to
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implement and is obviously correct™. But we can also see that the time it takes to com-
plete the search is at least as long as it takes to iterate through the entire search space. More
formally, if there are S elements in the search space, the time complexity of this algorithm
is ((S). As we will see, the search space associated with many optimization problems
can quickly become mind-bogglingly large, effectively ruling out brute-force search as an
algorithm.

1.6.2 Wisdom of the Crowd, Revisited

At the beginning of this chapter, we considered the problem of aggregating guesses x1, ..., x,
into a single, accurate guess, 0*. Our approach was to find the 6* which minimizes the
average square loss, Lsq, defined as follows:

(xi — 0)%

|-
,MS

qu(f)) = Tlligsq(xire) =

Il
—_
Il
—_

where lsq(x;,0) = (x; — 0)?. A potential pitfall of using the square loss lies in its sensitivity
to outliers. If the data are expected to be noisy™, a better approach might be to minimize
the average absolute loss, L,,s(6), defined as

1 1 &
abs E;l abs xll —Ez‘xi_m;

i=1
where (45(x;,0) = |x; — 0]. This leads to the following computational problem:

GIVEN: Real numbers x4, ..., x,.
COMPUTE: A real number 8" minimizing the average absolute loss, Lps.

The average absolute loss L,ps is not differentiable, and so we cannot solve the problem
using calculus, as was the case with the average square loss. Moreover, this problem’s
search space is the infinite set of all real numbers, and so it seems that brute-force min-
imization cannot be used to solve it. However, we will soon see that L,,, achieves its
minimum at one (or more) of the data points. As a result, the search space is reduced
from the infinite set of all real numbers to the finite set of data points.

A good first step in solving an optimization problem is to visualize the objective func-
tion. In this case, the objective function, L,ps, is the sum of piecewise linear functions.
More precisely, we have:

Lan(®) = 3 L= 01 = 1 (-1,

i=1

10Provided that the function implementing the objective function is correct!
1Or you have an enemy in the crowd who intentionally submits a bad guess.
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Figure 1.1: L, is a continuous, piecewise-linear function whose slope changes only at the
data points.

Defining the piecewise-linear function f;(6) = % - |x; — 0] foreachi € {1,...,n}, we see
that Lyps(6) = Y fi(0). The plot of a given f;(6) makes a V-shape, centered around the
data point x;. Because Laps(0) = f1(0) + ...+ fu(0), the plot of the objective function
L,ps(0) can be found by “stacking” the plots of f1, f2, ..., fu, as is shown in Figure [C1l. The
plot suggests that the following claim is true (its proof is left as an exercise):

Claim 1. Ly is a continuous, piecewise-linear function whose slope changes only at the data
points, x1, ..., Xn. Moreover, Ly attains its minimum.

Note that L, attaining its minimum value is not implied by its continuity or piecewise-
linearity. For example, the function f(x) = x is both continuous and linear (and therefore
piecewise-linear), but never achieves its minimum value of —oco.

We now wish to prove the following theorem:

Theorem 3. L, achieves its minimum value at a data point.

Note that the theorem does not say that a minimizer of L,,s must be a data point. If the
preceding sentence seems contradictory, consider this: there may be several minimizers
of L,ps. We only wish to show that at least one of the minimizers is a data point.

Proof. Our proof strategy is as follows. Let 8’ be a minimizer of L,s; Claim [ tells us that
such a minimizer exists. There are two cases: either ¢’ is a data point, or it is not. If it is
a data point, great! We're done. If 6’ is not a data point, we will show that the data point

closest to 8/ must be a minimizer™.

12Actually, the closest data points on either side of 8’ will turn out to be minimizers, but we need only one
of them.
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Assume in what follows that there are at least two data points (if # = 1, Ly is mini-
mized by taking 6 = x1). If ¢ is not a data point, then it must lie between two data points;
call these x_ and x4, with x_ < x;. From Claim [I, the objective function L, is linear
on the interval (x_, x4 ). It turns out that the slope of L,y here must be zero: if the slope
were non-zero, we would be able to decrease the value of L,ps by moving a little bit to the
left or to the right of 6’. But ¢’ is a minimizer, so no smaller value of L,ps can exist! Hence
the slope of L,,s on (x_, x4 ) is indeed zero. It follows from this and continuity that Ly, is
constant on [x_, x4 ]. Since a minimizer 6’ € [x_, x| is inside the interval, every point in
the interval (x_ and x in particular) is a minimizer. O

This proof used a technique called proof by contradiction that you may or may not
have seen before. In a proof by contradiction, we show that a claim is true by assuming
that it is false, and then showing that this leads to an obvious impossibility. The only
way out of this embarrassing situation is to conclude that the assumption itself must be
wrong, and that the claim must be true after all. This technique is very useful when we are
working with objects that are supposedly special in some way (for instance, they claim to
be minimizers or unique).

Proof by contradiction was used above to show that the slope within an interval con-
taining a minimizer which isn’t a data point must be zero. To make the technique clear,
let’s write this part of the proof as a separate claim:

Claim 2. Let 6’ be a minimizer of Ly which is not a data point, and let x_ and x be the closest
data points such that 0’ € (x_,x.). Then the slope of Lgps is zero on the interval (x_, x4).

Proof. Assume for a contradiction that the slope on (x_, x ) is not zero, and is instead
some constant m # 0. If m is positive, then moving slightly to the left of 6’ decreases the
value of L,ps, contradicting the fact that 6’ is a minimizer. If m is negative, then moving
slightly to the right of 6’ decreases the value of L,ps, again contradicting the fact that 6’ is
a minimizer. In either case, we reach a contradiction. Therefore the slope on the interval
(x_, x4+) must be zero. O

We now return to solving the computational problem stated at the beginning of this
section. Theorem B tells us that L,,s is minimized at one of the data points, effectively
reducing the search space from the set of all real numbers to the set of data points. This
is a finite set, and so we can solve this problem with a brute-force search. We begin by
implementing the objective function, Laps:

def average_abs_loss(theta):
total_loss = 0
for x in DATA:
total loss += abs(x - theta)
return total_loss / len(DATA)
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(a) The geyser eruption data. (b) The eruption data clustered into two groups.
Figure 1.2

Here it is has been assumed™ that the data are stored in the module-level variable DATA.
A quick analysis of this algorithm shows that it takes ®(n) time to compute the value of
the objective function at any point 6, where 7 is the size of the data set.

We then carry out the brute-force search by calling

brute_force_minimize(average_abs_loss, DATA).

The search calls average_abs_loss once for each data point, for a total of n calls. Each call
takes time ©(n). As a result, the brute-force search takes quadratic time, overall. While it
turns out that there are faster (linear time) algorithms for solving this problem, a quadratic
time algorithm is still practical for data sets of modest size.

1.6.3 Exponential Time: Clustering

We now turn our attention to the classic data science problem of clustering, in which the
goal is to automatically discover groups (i.e., clusters) in the data. We will see that the
brute-force approach to finding clusters takes time that is exponential in the number of
data points, which is much too slow for most practical applications.

Figure [7d depicts data collected from the Old Faithful geyser in Yellowstone National
Park. In particular, the time spent waiting for the geyser to erupt is plotted against the
duration of the ensuing eruption. The plot suggests that the eruptions form two distinct
groups: one group consisting of the eruptions which last longer but also take longer to
form, and the other consisting of those which are short-lived but are quick to form.

131t would probably be a better practice to move DATA to a closure, but we’ll opt for a module-level variable
for now out of simplicity.
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Suppose we wish to recover these groups automatically. The first step in doing so is to
formalize the goal of clustering as a computational problem. There are many approaches
to doing so, and we will adopt a view in which the goal is to separate the data into two
groups which are well-separated. More formally, define a partition of the data set X
to be a pair of sets, B and R, such that each point x € X belongs to exactly one of B
and R. Intuitively, B and R are the clusters. In order to measure how well-separated
the clusters are, we introduce the function é(B, R) which returns the smallest distance
between a point in B and a point in R; if one of the two sets is empty, we’ll define §(B, R) =
oo for convenience. Figure [7H shows an intuitively good clustering of the points into a
blue cluster B and a red cluster, R, and the pair of points which determine the separation
of the clusters, (B, R).

Of course, there are many different ways to partition the data. Our goal is to find the
partition the data which maximizes the separation, (B, R). This leads to the following
computational problem:

GIVEN: Data vectors X = {x1,..., X, }.
COMPUTE: A partition (B, R) of the data with maximum separation, 6(B, R).

Note that the search space associated with this problem is the set of all partitions of the
data. Since the data set is finite, the set of all partitions is finite, too. This means that we
may apply the brute-force strategy in order to solve the problem. The resulting algorithm
is simple to implement, and obviously correct.

But recall that the time it takes to execute a brute-force search is at least as long as it
takes to iterate through all of the elements in the search space. How big is the search space
in this problem? That is, how many partitions of n data points are there? For each point,
we must make a decision: does it belong to cluster B or cluster R? Since there are two
choices for each of n points, the total number of possible partitions is

2:-2...2.2=2"
—_—

n

Therefore, the size of the search space is 2", where n is the number of data points. This
means that the brute-force search has a time complexity of ()(2"); that is, it takes expo-
nential time.

Exponential time is impractical for all but the smallest problems. To demonstrate this,
suppose that the time it takes for a computer to perform a single basic operation is one
nanosecond™. A brute-force search solving the above problem performs at least 2" oper-
ations, which takes a total of at least 2" nanoseconds. The table below shows how long
this is for various values of n:

4This is a fairly reasonable estimate. It is also a very short amount of time: it takes a photon (the fastest
thing in the universe) one nanosecond to travel 30 centimeters.
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n Time

10 1 microsecond
20 1 millisecond

30 1 second
40 18 minutes
50 13 days

60 36 years

70 37,000 years

As the table shows, the brute-force approach will only be useful for small problem sizes,
as it will take several days to cluster datasets as small as 50 points. In contrast, a quadratic-
time algorithm would be able to cluster 10,000 points in one-tenth of a second. We will
design such a quadratic algorithm for solving this problem in the coming chapters.

In general, computational problems which require us to search over all possible combi-
nations or assignments of points into groups will have exponentially-large search spaces,
making brute-force search impractical. We will see that many of these problems will turn
out to have efficient, polynomial-time algorithms.

1.6.4 Factorial Time: Doctor Orders

We will now consider a problem whose search space grows at a rate that is even faster
than exponential.

Suppose that it is graduation day at the medical school, and you are given the task
of placing the new doctors in line to receive their diplomas. Each graduate is allowed to
make a brief speech, and an adjustable microphone has been placed at center stage for
that purpose. But some graduates are taller, and some are shorter — you are worried that
if you do not line them up in an efficient way, the microphone will have to be constantly
adjusted.

You decide that a good ordering is one in which no speaker has to adjust the micro-
phone very far. To make this precise, you come up with an objective function Lg;s which
returns the greatest difference in height between consecutive speakers. For example, sup-
pose there are four graduates this year; their names and heights are shown in the table
below: If we place them in alphabetical order, as shown in the table, the value of the

Name Height (inches)
Winona 62
Xanthippe 58
Yvonne 71

Zelda 68
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objective function L is:
max{|58 — 62|,|71 — 58|, |68 — 71|} = max{4,13,3} = 13.

On the other hand, the ordering of Xanthippe, Winona, Yvonne, and Zelda results in the
objective function taking the value:

max{|62 — 58|,|71 — 62|, |68 — 71|} = max{4,9,3} = 9.

Intuitively, your goal is to find the ordering of speakers in which the biggest difference in
heights is minimized, leading to the following computational problem:

GIVEN: n speakers and their heights.
COMPUTE: An ordering of the speakers which minimizes Lg;, the biggest ab-
solute difference in height between consecutive speakers.

Since there are finitely-many speakers, there are finitely-many orders in which they
can speak. How many are there, exactly? There are n choices for the first speaker, n — 1
for the second, n — 2 for the third, and so on, for a total of n(n —1)(n —2)---3-2-1 =n!
possible orderings (or permutations). A brute-force search to minimize Lgi¢ will have a
time complexity of Q)(n!); that is, it will take factorial time.

The factorial function grows much faster than any exponential function. As a result,
a factorial time algorithm is even slower than an exponential time algorithm. To demon-
strate this, assume once more that it takes one nanosecond for a computer to perform a
basic operation. If there are n speakers, it will take a brute-force search at least n! nanosec-
onds to compute the optimal ordering. The table below shows how long this is for various
values of n:

n Time

7 5 microseconds
10 3 milliseconds
15 21 minutes
20 77 years
27 25 times the age of the universe

Twenty-seven is not a lot of graduates — a large medical school could easily graduate 100
new doctors every year. But our algorithm clearly has no chance at working when # is
this large! We need to do something more clever than simply checking all of the possible
orderings.

Recall that the objective function computes the greatest absolute difference in height
between consecutive speakers. Intuitively, we want each speaker to speak between two
people who are of similar height to their own. One way of doing this is to sort the speakers
by height. It turns out that sorting the speakers by height indeed minimizes Lg;:
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Theorem 4. Sorting the speakers by height minimizes the maximum absolute difference in height
between consecutive speakers.

Proving the theorem will be made easier by using the following claim:

Claim 3. Let a and b be speakers such that no other speaker is between a and b in height. Then
in any ordering of the speakers in which a speaks first and b speaks last, the maximum absolute
difference in height between consecutive speakers is at least the difference in height between a and
b.

Proof. We will prove this claim using a picture. Draw all of the speakers on a number
line according to their height. Any ordering of the speakers can be drawn by making
an arrow between consecutive people, where the length of the arrow is the difference in
height between the people it connects. For example, the ordering (a,y, x,b) is depicted
below:

o—eo—o ® h
x a b y

The length of an arrow is the difference in height between the speakers. The length of
the longest arrow is the biggest difference in height between consecutive speakers. In
any sequence of arrows which starts at 2 and ends at b, there must be at least one arrow
which crosses the gap between a and b. Since the width of this gap is the difference in
height between a and b, the length of this crossing arrow (and thus the difference in height
between the speakers it connects) must be larger than the difference in height between a
and b. O

We will now prove the theorem. Our approach will be to use proof by contradiction,
which was first introduced in the proof of Theorem B on page B3. Before we begin, note
that value of the objective function, Lg;f, is not changed if we reverse an ordering. This
will be useful in this proof. For now, it means that it is safe to assume that by sorted
ordering we mean sorted from shortest to tallest.

Proof of Theorem B. In what follows, assume that the number of speakers is greater than
two, as otherwise the proof is trivial.

Let / be the maximum absolute difference in height between consecutive speakers in
the sorted ordering. This means that there exists a pair of consecutive speakers — call
them a and b — such that the difference in the height between a and b is . Since we have
assumed that the graduates are in ascending order by height, we can assume that a is
shorter than b.

Now suppose for a contradiction that there exists an ordering in which the maximum
difference in height between consecutive speakers is smaller than ¢. Without loss of gen-
erality, we can assume that a occurs before b in this ordering, too, since if this isn’t the
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case, we can simply reverse the ordering — this doesn’t change the value of the objective
function, and we are left with an ordering in which a comes before b.

Note that since a4 and b are consecutive speakers in the sorted order, there is no other
speaker which is between a and b in height. Therefore, we may apply Claim B to conclude
that the maximum absolute difference in height between consecutive speakers in the sub-
ordering which starts with a and ends with b must be at least the difference in height
between a and b, which is ¢. That is, the maximum absolute difference in height between
speakers in the new ordering is at least as large as it is in the sorted ordering. This con-
tradicts the assumption that the new ordering is better. Hence this ordering cannot exist,
and the sorted order is optimal. O
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Sorting is a fundamental operation on data, and so the study of sorting algorithms
naturally fits within the data science curriculum. Nevertheless, the fact remains that very
few data scientists will ever have to implement a sorting algorithm as part of their job.
Most every major programming language and numerical package provides highly opti-
mized implementations of one or more sorting methods. So why do we study sorting, if
not to know how to implement sorting algorithms?

43
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The first reason is that sorting algorithms provide excellent opportunities to practice
our skills in algorithm analysis. Over the next few sections, we will prove the correct-
ness and analyze the time complexity of non-trivial sorting algorithms. We will also see
recursive algorithms for the first time, and learn how to assess their efficiency.

Second, while you may never have to implement a sorting algorithm, you will cer-
tainly have to use them. Different sorting methods have their own advantages and dis-
advantages, and an algorithm which is the best for one use case might not be the best for
another. Understanding how these methods work at a fundamental level will help you
decide which to use, and when.

A third, more substantial reason is that sorting algorithms exhibit a diverse range of
algorithm design strategies. It is true that you may never implement a sorting algorithm
in your day-to-day job, but you will likely implement an algorithm that uses a similar
strategy. You'll then find your understanding of sorting algorithms useful in applying the
design strategy.

Fourth and finally, many computational problems become easier (or solutions become
more efficient) it it can be assumed that the input is sorted. For instance, finding the
median of a list of numbers can be done in constant time if the list is sorted. We will see
several examples of such problems in this chapter. Moreover, we will get practice with
designing algorithms that take advantage of assumptions in order to work faster™.

2.1 Selection Sort

2.1.1 Intuition

Selection sort is an intuitive sorting algorithm that many people will come up with on
their own if asked to sort a deck of cards or a stack of books. For example, suppose that
the following cards are spread out in a row on the table in front of you:

7)) 1 () o)

A simple procedure for sorting these cards is to iteratively remove the smallest. Here, —3
is the smallest card. We take this card from the top row and place it at the beginning of a

new row of cards:
B

IFifth, sorting algorithms are popular subjects in job interviews.
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We then find the smallest remaining card in the top row and move it to the end of the new
row. Here, the smallest remaining card is 1:

]

We proceed like this, at every step selecting the smallest card from the top row and placing
it at the end of the bottom row. The next card to be moved is 2:

]

Then 7:

And finally 9:

2 1) ) (o)

At the end of the procedure — and at any step during — the bottom row of cards is sorted.

This informal description of the algorithm is easy to implement in code. The straight-
forward approach involves creating a new list for storing the sorted output. At each step,
we pop the smallest element from the input list and append it to the output list. While
this implementation is correct, it uses more memory than is necessary.

2.1.2 An In-Place Selection Sort

Instead, we will design a clever implementation of selection sort which modifies the input
list, thereby avoiding the creation of a new list altogether. At any step of the algorithm,
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the input list is divided into two parts. The first part, at the head of the list, contains
the elements that have already been sorted; these are in their final positions. The second
part, consisting of the tail of the list, contains the elements which have yet to be sorted.
Separating these two parts of the list is the barrier. The barrier points to the first element
of the tail of the list, which is also the location where the next selected element will be
placed. At each iteration, the element at the barrier is swapped with the smallest element
in the tail. Once this happens, the element at the barrier is in its final, sorted position, and
so the barrier is moved to the right. The Python code below makes this precise.

def selection_sort(arr):
"""In-place selection sort."""

n = len(arr)

if n <= 1:

return

for barrier_ix in range(n-1):
min_ix = find_minimum(arr, start=barrier_ix)
arr[barrier_ix], arr[min_ix] = arr[min_ix], arr[barrier_ix] # swap

def find_minimum(arr, start):
""EFinds tndexr of minimum. Assumes arr is mon-empty."""
n = len(arr)
min_value = arr[start]
min_ix = start
for i in range(start + 1, n):
if arr[i] < min_value:
min value = arr[i]
min_ix = 1i
return min_ix

Note that the index of the barrier starts at zero and ends at index n-2, which is not the last
element of the list, but rather the second to last. We will see why this is in just a moment.

The correctness of the above algorithm follows from proving three loop invariants
concerning the for-loop in the main selection_sort function:

Invariant 5. After the ath iteration, each of the first a elements of arr is less than or equal
to each of the last 1en(arr) — a elements.

Invariant 6. After the ath iteration, the first &« elements of arr are in sorted order.

Invariant 7. After the ath iteration, arr is a permutation of its original elements.
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The first invariant is used to prove the second. It might seem like the third invariant
is unnecessary, but consider this: an algorithm which simply overwrites all elements with
zeroes satisfies the first two invariants, but it clearly doesn’t correctly sort the list!

We will prove the first invariant now — the second and third are left as exercises. In
proving these invariants, it is useful to adopt the convention that any universal statement
about an empty list is vacuously true. For example, an empty list is considered to be
sorted?.

Proof of Invariant 1. We start with initialization. We wish to prove the statement: “After
the zeroth iteration (i.e., before the first) each of the first zero elements of arr is less than or
equal to each of the last 1en(arr) elements. Because arr is an empty list, this is vacuously
true. We have therefore proven initialization.

Next, we prove maintenance. Assume that after the (¢ — 1)th iteration, each of the
first « — 1 elements of arr are less than or equal to each of the last len(arr) — (« — 1)
elements. We wish to show that after the ath iteration, each of the first & elements is less
than or equal to the remaining len(arr) — & elements.

On the ath iteration, the ath element of arr is swapped with the smallest entry among
the elements in the “tail” of the list, where the tail starts with the ath entry. Let x be
the value of this smallest entry. Because x is a minimum, x is less than or equal to each
element from the ath onwards. Therefore, after the swap, the ath element (which now has
value x) is less than or equal to each element from the ath onwards; namely, it is less than
or equal to each element from the (« + 1)th onwards. From the assumption, each of the
tirst « — 1 elements is less than or equal to each element from « + 1 onwards. Together,
the previous two sentences say that each of the first « elements are less than or equal to
each of the last 1en(arr) — a elements. This proves maintenance. O

Once we have stated and proved these invariants, we consider the termination of
the loop. As we mentioned above, the loop only iterates len(arr) — 1 times, instead
of len(arr) times as one might expect. Plugging this into each of the loop invariants, we
see that after the loop exits:

1. each of the first 1en(arr) — 1 elements is less than or equal to the last 1en(arr) —
(len(arr) — 1) = 1 elements.

2. the first len(arr) — 1 elements are sorted.

3. the array is a permutation of the original values.

The first statement tells us that the last element is the largest in the array; the second
statement tells us that the preceding elements are sorted. Therefore the elements are in

2More exotically, the statement “Every element of arr is made of cheese.” is a true statement, if arr is an
empty list.
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sorted order. Since the elements are the same elements that were given as input, we have
proven that the algorithm is correct.

2.1.3 Time Complexity

We will now find the time complexity of selection sort. We start our analysis with
find_minimum, since it is called in every iteration of the sort. How many times does the
body of the for-loop in find_minimum run? The answer will depend on start, since the
loop index i starts counting at start + 1 and endsatn - 1. To come up with a formula
for how many times the loop runs, a useful trick is to pick a nice value of start and run
through the algorithm in your head. In this case, we might suppose that start is simply
zero; then the loop variable starts at 1 and counts ton - 1, for a total of n — 1 iterations.
Similarly, if start is 1, then then loop starts counting at 2, and the body is therefore exe-
cuted n — 2 times. Picking up on the pattern, we see that, in general, the body is executed
n - start - 1 times.

Now we get back to analyzing selection_sort. The call to find_minimum which oc-
curs in every iteration of selection_sort is just a nested loop in disguise, and we want
to count the number of times the body of the inner loop runs in total. That is, how many
times does the loop body in find_minimum run over the course of the sort? On the first
iteration of the sort, barrier_ix is zero. Hence, from the above, the body of the loop
in find_minimum runs n — 1 times. On the second iteration, when barrier_ix is 1, it
runs n — 2 times. In general, for any particular value of barrier_ix, the body of the
loopin find_minimumrunsn - barrier_ix - 1 times. In particular, on the last iteration,
barrier_ixisn — 2, and the body of find_minimumruns n — (n —2) — 1 = 1 time. There-
fore, the body of the loop in find_minimum runs one fewer time for every iteration of the
loop in selection_sort, starting with n — 1 times and ending at 1 time. Hence the total
number of runs is:

(mn—1)4+n—-2)+...+3+2+1.

This is the sum of the first n — 1 natural numbers Recall (from the first homework) that the
sum of the first n natural numbers is n(n + 1) /2. Here we have the first n — 1 numbers,
and so we replace n by n — 1 to obtain: (n — 1)n/2 for the total number of times that the
loop body in find_minimum runs over the course of selection sort. Since n(n —1)/2 =
©@(n?), we say that the sort runs in quadratic time.

2.2 Digression on Recursion
The next sorting algorithm we will consider, merge sort, is not quite as intuitive as se-

lection sort. Nevertheless, it is a classically-elegant algorithm and it is much faster than
selection sort, to boot.
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Merge sort is a recursive algorithm, meaning that it references itself. Recursive algo-
rithms can be a little mind-bending at first, so we will take the opportunity to study a
simple recursive algorithm before tackling merge sort.

2.2.1 Recursive Algorithm Design
Consider the problem of computing n-factorial. First recall that

n=n-n—-1)-(n—2)---3-2-1.

Conventionally, we assume that 0! = 1. Now, if we group the last n — 1 terms, we will
recognize the grouped quantity as (n — 1)!:

=n-[(n—1)-(n—-2)---3-2-1]

(n—1)!

=n-(n—1)!

So if we know what (n — 1)! is, we can compute n! by simply multiplying by n. For
example, if we somehow know that 4! is 24, then we can compute 5! by calculating
5x 4! =5 x 24 =120.

Using this insight, we will now write a Python function, factorial, which takes one
argument, n, and which computes n! by means of a recursive algorithm. When design-
ing a recursive function such as this, we take a leap of faith. Here, we will assume while
writing the body of factorial that calling factorial(n-1) (magically) results in the cor-
rect value. Under this assumption, n! is computed by carrying outn * factorial(n-1),
leading to the following code:

def factorial(n):
""Eirst attempt at recursive algorithm for computing n!"""
return n * factorial(n-1)

If this seems too easy, you're right: the above code is incorrect, and will in fact never termi-
nate. To see why, try running the function in your head with an input of n = 3. On the first
call of the function, the computer tries to multiply 3 with the result of factorial (3-1).
This results in a second call to the function: factorial(2), during which the computer
tries to multiply 2 with the result of factorial(2-1). This results in a third call to the
function: factorial(1). During this call, the computer makes a fourth call to the func-
tion: factorial(0). During the fourth call, the computer makes a fifth: factorial(-1).
And so on. The algorithm will recurse forever, or at least until the computer runs out of
memory”.

30r until you hit Python’s recursion limit. Python is not optimized for recursion, and therefore
only allows you to make several thousand recursive calls; you can see exactly how many by running
import sys; sys.getrecursionlimit().
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The way out of this situation is simple: we modify factorial so that, when n is small
enough, it doesn’t recurse: it calculates and returns the answer outright. Here, we know
that 0! is one by convention, so we add a check to the beginning of the function which
returns 1 if the argument is zero:

def factorial(m):
"""Computes n!, recursively. Assumes n is non-negative integer."""
if n ==
return 1
return n * factorial(n-1)

An input for which the answer is computed without recursing is known as a base case.
You can check that, for any integer value of n > 1, factorial(n) will only recurse until it
hits the base case, and will therefore terminate in a finite amount of time. In fact, we will
soon see how to assess the time complexity of a recursive algorithm such as this.

In the coming sections, we will design several more recursive algorithms. When we
do so, we will keep in mind the two steps we performed above: First, we took a leap of
faith in assuming that the function being written already works for smaller inputs, and
second, we found a base case for which the algorithm can compute the answer directly.

2.2.2 Correctness

The leap of faith we took when designing the above recursive algorithm may have left you
feeling uncertain about its correctness. We will now restore your confidence by proving
that the above factorial algorithm works. To be precise, we wish to prove the following
claim:

Theorem 5. factorial (n) correctly computes n! for all non-negative, integer inputs.

Verifying the correctness of algorithms has so far been synonymous with proving loop
invariants, but the recursive algorithm above has no loops to analyze. We will take a
different, but related, approach instead.

First note that proving the correctness of factorial(0) is easy: In this case, the al-
gorithm simply returns one without recursing, and 0! is indeed one. This proves the
correctness of the algorithm in the base case — the challenge now is to prove the claim for
the infinitely-many possible inputs which remain.

Now consider the case when n = 1. In this situation, the algorithm computes and
returns 1 * factorial(l - 1), resulting in a call to factorial(0). This is will produce
the correct value, provided that factorial(0) is correct. But we have just shown that
factorial (0) is correct! So factorial (1) is correct, too.

Next, consider the case then the input n = 2. By similar logic, factorial(2)
will be correct, as long as factorial(1l) is correct. But we have just shown this! So
factorial(2) is indeed correct. We could proceed like this indefinitely, showing that
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each of factorial(3), factorial(4), factorial(5), and so on are correct. Instead, we
will write one generic argument that works for all positive integersn > 1.

Proof by Induction

Note that in proving the correctness of factorial(l) above, we used the fact that
factorial (0) is correct. Likewise, we used the fact that factorial (1) is correct in or-
der to prove the correctness of factorial(2). In an argument that works for general
non-negative, integer n > 1, we would show that, if factorial(n-1) is correct, then
factorial(n) is correct; this is known as proving the inductive step.

Together, proving the base case and the inductive step are sufficient to prove Theo-
rem B. The base case shows that the algorithm is correct when given zero as input. We can
then apply the inductive step with n = 1 to show that factorial(1) is correct. Applying
the inductive step once more proves that factorial(3) is correct. Indeed, we can repeat-
edly apply the proof of the inductive step to show that factorial(n) is correct for any
non-negative, integer value of n. A proof of this form is known as a proof by induction.
We now give such a proof of Theorem B:

Proof of Theorem B. We will prove the theorem by induction.

BASE CASE (n = 0): When n is zero, the function simply returns one, which is indeed
O-factorial. So factorial (0) is correct.

INDUCTIVE STEP: Let n > 1 be an integer such that factorial(n-1) is cor-
rect. We will show that factorial(n) is correct. The call to factorial(n) returns
n * factorial(n-1). Note that factorial(n-1) = (n — 1)!. Therefore, factorial(n)
returns ncdot(n — 1)! = n!, and so factorial (n) is correct. O

The inductive step should look familiar — it is very similar to the maintenance step of
a loop invariant proof. Similarly, the base case is analogous to initialization. In fact, the
proofs of loop invariants we have so far seen are special cases of inductive proofs.

2.2.3 Time Complexity

What is the time complexity of factorial? So far, we have only assessed the efficiency
of iterative algorithms. We will need to develop a new approach to analyze recursive
routines.

To be precise, let T(n) be the time taken by factorial(n). As of now, we do not know
what T'(n) is in general, and our goal is to bound it asymptotically. We begin by observing
that T(0), the time taken by factorial(0), is some (unknown) constant, cg. Therefore, we
may write:

T(O) = Cyp,

Now consider what happens when factorial(n) is called, wheren > 1is an arbitrary
integer. We can compute the time this call takes, T(n), by adding up the time taken by each



52 CHAPTER 2. SORTING

line of code in the function body. To start, the function will take some constant amount
of time d; to check whether n is zero. It will then spend some unknown amount of time
T(n — 1) in the call to factorial(n-1). Lastly, it will spend some constant amount of
time d> multiplying the result of the recursive call with n and returning the result. Hence
the total time taken is:

T(n)=di1+T(n—1)+d,
=T(n—-1)+c¢,
where ¢ = d; + dy. Note that the T on the right hand side is the same as the T on the left
hand side; that is, we have a recursive formula for T(n). In words, the above says that

the time it takes to run factorial (n) is equal to the time it takes to run factorial(n-1),
plus a constant.

Recurrence Relations
We have found that the time it takes for factorial(n) to run is given by the following
formula:
, =0
T (1’1) _ Co n
Tn—1)4+c¢, n>1

A recursive formula such as this is known as a recurrence relation. The base case of the
recurrence is the input for which T(n) can be computed directly, without recursing — here,
the base case is when n = 0.

The above recurrence tells us how to compute T(n) for any integer n > 0. For instance,
to compute T (1), we calculate:

T(1)=T(1-1)4c=T(0)+c=co+c.
Likewise, to compute T(2), we have:

T(2)=T(2—1)+c
=T(1)+c

We have just seen that T(1) = cg + c. Making this substitution, we find:

=(co+c)+c
=2c+ g

In principle, we could follow this procedure to calculate T(100), T(1,000), or even
T(1,000,000), but doing so would be somewhat time consuming. Moreover, it is still
unclear how fast T(n) grows — is it @(n), ©(n?), or something else altogether? What we
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would like is a formula for T(n) which isn't recursive, and instead allows us to compute
T(n) directly. Finding a non-recursive formula for T(n) is called solving the recurrence.
There are several approaches for solving recurrences; we will take a look at one of them
now.

Solving Recurrences by Unrolling Them

Consider again the recurrence:

~Jco, n=2~0
T(n)_{T(n—l)-i-c, n>1" @1)

Our goal is to get rid of the T(n — 1) on the right hand side of the equation. If we replace
n by n — 1 in Equation 27T, we arrive at a formula for T(n — 1):

Tn—1)=T((n—1)—1)+c=T(n—-2)+c.
Using this expression for T(n — 1), we can rewrite the formula for T(n):

T(n)=T(n—1)+c
=[T(n—2)+c]+c
=T(n—2)+2c

We say that we have unrolled the recurrence. What have we gained by doing so? We still
have a T on both sides of the equation, but notice that the argument of the T on the right
hand side is smaller than it was before. What happens if we unroll for a second time?
Observe:

Tn—2)=T((n—-2)—1)+c=Tn—-3)+c

SO:

T(n)=T(n—2)+2c
=[T(n—3)+c]+2
=T(n—3)+3c

After each unrolling, the argument of T on the right hand side decreases. If we unroll
sufficiently many times, eventually the argument will be zero. We can stop unrolling at
that point, because we know that T(0) = cp. We will have by then replaced all instances
of T on the right hand side, obtaining a formula which allows us to compute T (1) directly
and thereby solving the recurrence.

More precisely, we can solve a recurrence by following the below procedure:
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1. Unroll the recurrence until a pattern emerges. We have already done this above. Let’s

agree to call the “first step” of unrolling the point in time before we have unrolled
the recurrence. Then at the first step we have the original recurrence: T(n) = T(n —
1) + c. The “second step” of unrolling is then the point in time after unrolling once.
At the second step we found: T(n) = T(n —2) 4 2c. At the third step (after unrolling
twice), we had: T(n) = T(n — 3) + 3c. We could continue, but by now a pattern has
emerged. Placing these results into a table can make it easier to identify the pattern:

Step Formula
1 Thr-1)+c
2 Tn—-2)+2
3 T(n—3)+3c

. Find a general formula for T(n) in the kth step of unrolling. The table above makes it

clear that on the kth step of unrolling we will obtain the formula T(n) = T(n — k) +
k - c. You can check your general formula by plugging in a particular value of k and
verifying that the result matches what you have in the table above. For instance,
taking k = 3 yields T(n) = T(n — 3) + 3¢, which is indeed what is in the table.

. Calculate the step number in which the base case is reached. The argument to T decreases

with each step until it eventually reaches zero, which is the base case of this recur-
rence. On what step does it reach zero, exactly? On the kth step, the argument is
n — k. We therefore solve n — k = 0 for k, resulting in k = n. Hence the base case is
reached on the nth step

. Replace k with this step number in the general formula for T (n). We found above that, on

the kth step, T(n) = T(n — k) + k - c. Replacing k by n (the number of steps needed
to reach the base case) we arrive at a new formula:

Tn)=T(n—n)+n-c
=T(0)+n-c

We know from Equation I that T'(0) = ¢o. So:

=co+n-c

At this point, we’ve removed all T’s from the right hand side of the equation. We have
therefore solved the recurrence: its solution is T(n) = ¢o + n - c. You can verify that this
formula will produce the same result as using Equation 271 to recursively calculate T (1),
for all integer values of n > 0.

Therefore, the time it takes factorial to run on an inputof size nis T(n) = ¢o+c-n =

©(n). That is, it takes linear time.
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2.3 Merge Sort

We will now look at an elegant and efficient sorting algorithm called merge sort. Merge
sort is a textbook example of a divide and conquer algorithm. In a divide and conquer
approach, the problem is divided into smaller and smaller problems until they are small
enough to solve easily (i.e., conquer); these solutions are then recombined to solve the
original problem. Divide and conquer algorithms are often simple in the sense that they
do not take up a lot of lines of code, but it can be difficult to see why they work at first
glance.

Merge sort implements the divide and conquer strategy in the following way: First,
it splits the input array into two smaller arrays which each have (roughly) half of the
original elements. It then sorts these smaller arrays independently. Finally, these smaller,
sorted arrays are merged into one large, sorted array.

2.3.1 Designing mergesort

We will implement merge sort as a recursive Python function, mergesort, which modi-
ties the array itself instead of returning a sorted copy. Since our implementation will be
recursive, we should think about the base case; i.e., an input for which the algorithm can
return the correct answer without recursing. A natural base case in sorting is when the
input array is of size one or less, as then the array is already sorted, and nothing needs to
be done! Therefore, our function will immediately check the length of the array - if is is
bigger than one, it will perform the work of sorting, otherwise it will simply return.

The high-level flow of the function is documented with comments in the code below:

def mergesort(arr):

if len(arr) > 1:

# split the array in half

TODO
sort the left half
TODO
sort the right half
TODO
merge the left and right halwves
TODO

HOH R R R " R

We will now fill in each part of the function in turn.

Splitting the Array in Half

Merge sort begins by splitting the array into two pieces, each of which will be sorted
independently. We can split an array into two pieces in Python using the slicing syntax —
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see the box below for a refresher. For instance, if middle is a variable storing the index of
the middle of arr, then splitting the array is done by writing:

left = arr[:middle]
right = arr[middle:]

It should be noted that slicing an array produces a copy?, so that modifying left or right
will not change arr.

4 A shallow copy, to be precise.
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Array Slicing. If arr is a list (or NumPy array), the part of the list starting
at index start and ending right before index stop can be obtained by writing
arr [start:stop]; this feature is known as slicing. Note that arr[stop] is not in-
cluded in the result! This, along with the fact that Python starts counting from zero,
can take some getting used to — but it has its advantages. For example, to take the
first three elements from an array, one can write:

>>> x = [Ial’ b , 'C', Idl’ |e|]

>>> x[0:3]

[Ial s 'p! s 'C']

In fact, the zero can be omitted. The below does the same as the above:
>>> x[:3]

[Ial s I'bl s 'C']

To select everything from the third index to the end, we can write:

>>> x[3:1len(x)]

[ 'q! s le! ]

But similarly, omitting the end of the slice defaults to selecting all elements up until
the end of the array:

>>> x[3:]

[ q' s e! ]

Of course, we don’t always have to start our selection at the beginning, nor do we
have to end at the last element. We can select, for instance, the second, third, and
fourth elements with a slice, too:

>>> x[1:4]
[Ibl’ ICI, 'd']

Observe that in each of these cases, whenever we write x [start:stop] the output is
an array of size stop - start. This will be useful to keep in mind.

57
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All that is left to do is to compute the index of the middle element of the array. In-
tuitively, the middle element is halfway through the array, and so the index should be
approximately len(arr)/2. Of course, if arr has an odd number of elements, this will
not be a whole number and thus not a valid index. In this case, we need to round - the
question is, do we round up or down? To help decide, suppose arr has three elements,
like below:

o, 1, 2]

Here, n/2 = 3/2 = 1.5. If we setmiddle by rounding down to one, we split the array into
[0] and [1,2]. On the other hand, if we split the array by rounding 1.5 up to two, we
split the array into [0, 1] and [2]. It turns out that either approach will work — we’ll just
pick one and stick with it to be consistent. So, in what follows, we will round down.

Rounding down in this way is called taking the floor of the number. More precisely,
the floor of a real number x is the largest integer which is less than or equal to x. For
example, the floor of 1.5 is 1; the floor of -2.3 is -3; and the floor of 4 is simply 4. In math-
ematical notation, we write | x| to denote the floor of x. Python provides the math.floor
function for computing the floor®. As you might have guessed, the smallest integer greater
than or equal to x is called the ceiling of x, and is denoted by [x].

We have therefore filled in the first part of the mergesort function:

import math

def mergesort(arr):
if len(arr) > 1:
# split the array in half
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr([middle:]

# sort the left half

# TODO

# sort the right half

# TODO

# merge the left and right halwves
# TODO

SPython also provides a “flooring division” operation, //, which takes the floor after dividing. That is,
len(arr) // 2 will produce the same result as math.floor(len(arr) / 2). We will use math.floor be-
cause it is more explicit.
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Sorting the Halves

After splitting the array into two halves, merge sort next sorts each. In principle, we could
do this using any sorting method, such as selection sort. While the resulting algorithm
would work, it turns out that it would be no faster than just using selection sort to sort the
whole list. Instead, merge sort takes a leap of faith and uses merge sort to sort each hallf:

import math

def mergesort(arr):
if len(arr) > 1:
# split the array in half
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]

# sort the left half
mergesort (left)
# sort the right half
mergesort (right)

# merge the left and right halwves
# TODO

Note that mergesort (left) and mergesort (right) do not return new arrays — they mod-
ify left and right.

Merging the Sorted Halves

Our function mergesort recursively sorts each half of the input array arr by modifying
left and right. Assuming for the moment that these recursive calls work as expected
(i.e., assuming that left and right are sorted), there remains the work of combining
left and right into a larger sorted array, which we will return by modifying arr. This is
the job of the merge function, which we will now design.

Consider the problem of combining two sorted stacks of cards into one sorted stack.
At any moment, you can only see the top of each stack. To merge these two stacks into
one, you repeatedly take the smallest card off of either stack. You will eventually remove
all of the cards from one of the stacks, but that’s fine: you just continue drawing cards
from the remaining stack until it, too, is depleted. Convince yourself that this procedure
correctly merges two sorted stacks of cards into one sorted stack.

Our merge function will operate in the same way — the Python implementation is
shown below. Several aspects are worth of explanation. First, the function’s arguments
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are the arrays to merge, left and right, but also arr; this is because we will store the
result in arr. Second, our function appends float ('inf') to the end of left and right®.
This special value is known as a sentinel, and the reason for adding it will be clear in
a moment. In short, its purpose is to make the algorithm cleaner and simpler” Lastly,
we will keep track of the “front” of the left and right arrays with variables left_ix and
right_ix; both initialized to zero.

def merge(left, right, arr):
left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0
for ix in range(len(arr)):
if left[left_ix] < right[right_ix]:
arr[ix] = left[left_ix]
left_ix += 1
else:
arr[ix] = right[right_ix]
right_ix += 1

The core of the function is a loop ranging from 0 up to (and excluding) len(arr). We
can think of the loop variable, ix, as being the index of the element of arr whose value is
currently being decided. At every iteration, the numbers at the “front” of 1eft and right
—thatis, left [left_ix] and right [right_ix] —are compared. The smaller of the two is
placed into arr at the index ix, and the “front” of the corresponding array is moved one
element to the right by incrementing left_ix or right_ix as necessary. At the end of the
ath iteration, the first a elements of arr will be in their final sorted order. Since the loop
performs len(arr) iterations, arr will be sorted after the loop is finished.

The purpose of the float('inf') at the end of each half is to simplify the algo-
rithm’s handling of the situation where one “stack of cards” becomes empty. When this
occurs in the above implementation, the “front” number on the “empty” array will be
float('inf'). When the “front” of each array is compared, the other array will always
win, since float('inf') is larger than any number. The other array will continue win-
ning until it, too, is depleted. But we don’t need to check that both arrays have been
emptied; we know that we need to merge precisely len(arr) elements, and so we are
done once we’ve made that many iterations.

®Recall that f1oat('inf ') is how oo is written in Python

7Appending to a Python list is (roughly-speaking) a constant-time operation, while appending to a
NumPy array is a linear-time operation. We’ll assume here that the input is a Python list (NumPy arrays
don’t have an append method, anyways). It should be stated that we can implement the merge function
without appending an oo; the code just becomes uglier.
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Algorithm 3 Merge sort.

import math

def mergesort(arr):
""Sorts array using merge sort."""
if len(arr) > 1:
# split the array in half
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]

# sort the left half
mergesort (left)
# sort the right half
mergesort (right)

# merge the left and right halwes
merge(left, right, arr)

def merge(left, right, arr):
left.append(float('inf'))
right.append(float('inf"'))
left_ix = 0
right_ix = 0
for ix in range(len(arr)):
if left[left_ix] < rightlright_ix]:
arr[ix] = left[left_ix]
left ix += 1
else:
arr[ix] = right[right_ix]
right_ix += 1

Merging the left and right halves completes the algorithm. The full code is shown in
Algorithm B.
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2.3.2 Understanding Merge Sort

Merge sort can seem like magic at first glance, and it isn’t easy to see where the sorting
actually occurs. We will prove that mergesort is correct in a moment, but first we will try
to gain some intuition for how the algorithm works.

The Sorting Happens in merge

It is interesting to note that no actual sorting occurs in the main mergesort function. In-
stead, the sorting occurs in the merge subroutine.

To see this, consider what happens when we execute mergesort([5, 2]). The
function splits this array into left = [5] and right = [2] and makes recursive
calls to mergesort([5]) and mergesort([2]). These recursive calls exit without
doing anything, since their inputs are arrays of size one. Hence mergesort calls
merge([5], [2], [5, 2]).

The merge function is given two “stacks of cards”, each with one element. It will take
the smaller of the two cards and place it into the first slot in arr, then it will place the other
card into the second slot — this is where the elements are sorted! Before calling merge, arr
is [6, 2]. After calling merge, arris [2, 5], and in sorted order.

Tracing a Merge Sort

Figure 211 depicts a merge sort on the array [7, 3, 1, 6, 2, 5, 8, 4]. The figure
shows that the input array is recursively halved until arrays of size one are obtained.
These are then merged to form sorted arrays of size two, which are in turn merged to
form sorted arrays of size four, and so on.

While helpful, such a depiction does not fully capture the order in which the vari-
ous calls to mergesort and merge are made. A helpful exercise is to imagine “bugging”
mergesort and merge by placing print statements on the first and last lines of each®:

def mergesort(arr):
args = arr.copy()
print (f'Starting mergesort{args}...')

print (f'Finishing mergesort{argsl}..."')
def merge(left, right, arr):

args = (left.copy(), right.copy(), arr.copy())
print (f'Starting merge{args}..."')

8We copy the arguments because we will later want to print them as they were when the function was
called, but their values will change over the course of the function.
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7[3[1]6]2[5]8]4]

7[3lafe]  [2]5]8]4]
1]l [2]5] [8]4]
8]
4] 8]

[1[36]7] 2]4]5]8]

[1][2]3]4]5]6]7][8]

Figure 2.1: Merge sort operating on an array.

print(f'Finishing merge{argsl}..."')

For instance, when mergesort is called on the list above, the first few lines of output will
be:

Starting mergesort([7, 3, 1, 6, 2, 5, 8, 4],)
Starting mergesort([7, 3, 1, 61,)

Starting mergesort([7, 3],)

Starting mergesort([7],)

Finishing mergesort([7],)

Starting mergesort([3],)

Finishing mergesort([3],)

Starting merge([7], [3], [7, 3])

Finishing merge([7], [3], [7, 3])

Note that there are many calls to mergesort before even the first call to merge! Tracing out
the rest of the function’s execution is left as an exercise.

2.3.3 Correctness

Merge sort takes a leap of faith whenever it recursively calls itself to sort each half of the
original array. We now prove that this leap is warranted, and that merge sort indeed sorts
correctly. More precisely, we will prove the following claim:
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Theorem 6. mergesort correctly sorts arrays of size n, for any n > 0.

As with proving the correctness of our factorial function before, we will use the
method of proof by induction. Recall that a proof by induction has two parts: the base
case and the inductive step. Here, there are actually two bases cases: when the size of the
input array is zero, and when it is one. In the inductive step, we show that if mergesort
functions correctly on inputs of size less than k, it will work on inputs of size k.

Proof of Theorem B. BASE CASE(S): n = 0 AND n = 1. An empty array and an array with
one element are both considered to be trivially sorted. When n = 0 and whenn = 1,
mergesort simply returns without modifying the array. Hence in both cases, the algo-
rithm is correct.

INDUCTIVE STEP: Let k > 2 be such that mergesort correctly sorts all arrays whose
size is strictly less than k. We will show that mergesort correctly sorts an arbitrary array
arr of size k. When mergesort (arr) is called on an array of size k > 2, the algorithm will
make two recursive calls: one to mergesort(left) and another to mergesort(right).
The size of left is less than k, as is the size of right®. Hence, by assumption, left and
right are correctly sorted by the recursive calls. Assuming that merge correctly merges
two sorted arrays, arr will contain the elements it started with, but in sorted order. Hence
the algorithm is correct.

O

2.3.4 Time Complexity

Merge sort is undoubtedly more clever than selection sort. This cleverness makes it harder
to understand, but it also results in a huge performance boost. In fact, it turns out that
merge sort achieves the best time complexity possible for sorting™!

Writing the Recurrence Relation

We will find the time complexity of mergesort in the same way that we analyzed
factorial: by writing down and solving a recurrence relation. To begin, let T(n) de-
note the time it takes for mergesort to run on an input of size n. We already know what
T(n) is when n = 0 or n = 1; in these cases, mergesort simply returns without recursing,
and hence takes constant time. Therefore T(0) = T(1) = O(1).

On the other hand, a call to mergesort with an array of size two or larger spends
its time in three different ways. First, it calculates the middle of the array and splits it

9 A more careful argument would actually prove that this is true! Here, we will take it for granted.
0More specifically, it achieves the best time complexity possible for algorithms which sort by comparing
elements to see which is smaller. Comparing elements is not always needed to sort. For instance, if is known
that the input are the first ten natural numbers in shuffled order, we can immediately put each number in its
correct position without comparing it to the others.
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into two pieces. Splitting an array by slicing produces new arrays, and each of the n
values must be copied from arr to either left or right, which takes ®(n) time. Next,
mergesort calls itself recursively on arrays which are roughly half the size. For simplicity,
let’s assume from here on that # is a perfect power of 2. Then each recursive call operates
on an array of size n/2. Therefore, each of these recursive calls takes time T(1n/2), for a
total time of 2 - T(n/2). Lastly, we merge the two sorted sub-arrays; a quick analysis of
the merge algorithm shows that this takes time ©(n). Altogether, the time spent in one
call to mergesort whenn > 2is

T(n) =0(n)+2T(n/2) + O(n).
Since ©(n) + ©(n) is just ©(n) once again, we can simplify a little:
T(n) =2T(n/2) +O(n).

In total, we have:

T(n) = 0(1), n € {0,1},
"= 2-T(n/2)+0O(n), n>2.

This is a recurrence relation, and we would like to “solve” it; that is, find a nice, closed
form expression for T (n) which doesn’t refer to itself.

In the above, we have used the ®-notation in a new way. When we write T(n) =
2T (n/2) + ©(n), what we mean precisely is that there is an unknown function f(n)
such that f(n) = ©(n) and the equality T(n) = 2T(n/2) + f(n) holds for all n.

Solving the Recurrence Relation

Before we solve the above recurrence, we will perform one small modification that will
make our lives easier. It turns out that we can replace the ©(n) with n without changing
the solution’s asymptotic bounds; likewise, we can replace ®(1) with 1. That is, if we are
only interested in writing T'(n) = ©(-), then we may instead solve the simpler recurrence:

T(n) = {1, ne{0,1},

2-T(n/2)4+n, n>2.

We will solve this recurrence relation by “unrolling” it, as we did when we solved the
recurrence for factorial on page b3. Recall that the first step of the procedure is to unroll
the recurrence until a pattern emerges. To start, we have:

T(n)=2-T(n/2)+n
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Let’s call this step #1 of our unrolling procedure. Now, if we plug in n/2 for every n, we
obtain T(n/2) = 2-T(n/4) 4+ n/2. Let’'s make that substitution for T(n/2) in the above:

=2[2-T(n/4)+n/2]+n,
=4-T(n/4)+n+n,
=4-T(n/4)+2n.

That was step #2 of the procedure. Now we want to expand T(n/4). Plugging in n/4 for
every n in our original recurrence relation, we get T(n/4) = 2-T(n/8) + n/4. Making
this substitution, we find that, after iteration k = 3:

=42-T(n/8) +n/4]+2n,
=8-T(n/8)+ 3n.

After the k = 4 iteration, we'll get:
=16-T(n/16) + 4n.

Let’s place these results into a table so that finding a pattern is easier:

Step Formula

1 Tn)=2-Tn/2)+n
2 T(n)=4-T(n/4)+2n
3 T(n)=8-T(n/8)+3n
4 T(n)=16-T(n/16)+4n

It seems that the coefficients on T and in the arguments to the functions are powers of
two. In fact, a little thought shows that on the kth iteration of the procedure, we’ll arrive
at:

=25 T(n/2%) + kn.

The next step of solving the recurrence is to find how many steps it takes to reach the
base case. In this problem, the base case is when n = 1. Hence we want to find the step
number k such that /2% = 1. Multiplying both sides by 2, we find that 25 = n. Taking
log, of both sides results in k = log, n. That is, after log, n steps, we will find T(1) on the
right hand side of our formula for T(n).

Lastly, we substitute this step number into our general formula. Replacing k with
log, n, we find:

T(n) = 2'°82" . T(n/2'°82") 4+ nlog, n
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Recall that 2!°%:" is simply n. Hence:

=n-T(n/n)+nlog,n,
=n-T(1) +nlog,n.

Since T(1) = 1, we end up with:

=n+nlog,n,
= O(nlog, n).

This solves the recurrence, and the time complexity of merge sort is ®(nlog, n).

Note that log, n differs from Inn by a constant factor. In fact, if b is any valid log-
arithm base, log,n = (log,n)/(log,2). Since ® “ignores” constant factors, we
could just as well have written T(n) = @(nlnn), T(n) = O(nlog,,n), or even
T(n) = ©O(nlog, n). That is, the choice of base is arbitrary when using asymptotic
notation. Because of this, we typically write T(n) = ®(nlogn) without specifying a
base.

Comparison to selection sort. We have seen that the time complexity of merge sort is
@(nlogn). Compare this to the time complexity of selection sort, which is @(n?). Is that
a big improvement? Absolutely! Suppose it takes selection sort n? nanoseconds to sort
a list, while it takes merge sort nlog, n nanoseconds. To sort a list of 1 million elements,
selection sort requires (1 million)2 nanoseconds, or 16 and 2/3 minutes. Merge sort, how-
ever, requires only about 20 milliseconds. This is because log, grows very slowly: in fact,
log, (1 million) = 20.

2.4 The Value of Sorted Data

Sorting is an important data science operation in its own right, but it turns out that many
other apparently unrelated computational problems become easier to solve if the input
is already sorted. We will see several of such problems in this section. We will use this
opportunity to practice designing non-trivial algorithms which exploit the special struc-
ture of a problem in order to achieve impressive speedups — these types of problems are
commonly posed in software engineering and data science interviews.

2.4.1 Searching

Suppose we are given a table with n rows, each of them containing information about a
different movie. We wish to find the index of the row corresponding to the classic Amer-
ican comedy, “The Wicker Man”. The straightforward approach to finding this index is
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to loop over the table’s rows and check, one-by-one, if each contains the desired movie.
When we find the desired row, we stop and return its index.

The algorithm we have just described is called linear search. The below Python code
implements the algorithm in the more general setting in which we wish to find the index
of an object (called target) in a list (called things). If the object is not in the list, the
function returns None.

def linear_search(things, target):
for ix, thing in enumerate(things): # see below
if thing == target:
return ix
return None

Python’s enumerate. Python’s usual for-loop just produces the elements in a con-
tainer, such as a list. But what if we want not only the elements, but their indices,
too? That is where enumerate comes in. An example should help make its behavior
clear. Let things = ['a', 'b', 'c'l. Then the output of:

for ix, thing in enumerate(things):
print(ix, thing)

willbe: 0 'a',then: 1 'b', and finally: 2 'c'.

Best and Worst Case Time Complexities

What is the time complexity of linear_search? As usual, this will depend upon the
number of iterations of the loop, but here we see something new: the number of iterations
depends not only on the size of things, but also on the particular target that is provided.
If the target happens to be the first thing in things, the loop only iterates once — this is
the best case out of all possible inputs. In the worst case, the target isn’t in the list at all,
and the loop goes through len(things) iterations.

More formally, let Test (1) be the time taken by linear_search on a list of size n in the
best case. That is, to compute Tpest(7), we time linear_search on all targets and all lists
of size n and return the smallest time. Of course, Tpest(71) is a function of 1, and we can
express the growth of this function using asymptotic notation: Thest(n) = ©(1). This is
the best case time complexity of linear_search. Likewise, let Tyorst(12) be the time taken
by linear_search on a list of size n in the worst case. By analogy, to compute Tworst(7),
we time the function on all targets and all lists of size n and return the largest time. Here,
the worst case takes time Tyworst(1) = ©O(n). This is the worst case time complexity of
linear_search.
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We tend to focus on the worst case time complexity when discussing the efficiency of
algorithms™. In particular, we often pick algorithms based on which has better perfor-
mance in the worst case. For example, insertion sort is a sorting algorithm with ®(n)
best case time complexity and ©(n?) worst case time complexity. Merge sort, on the other
hand, has matching best case and worst case time complexities of ®@(nlogn). While the
best case time complexity of insertion sort actually beats that of merge sort, we tend to
prefer merge sort because it is has a much faster worst case time complexity™.

Moreover, we can sometimes lower bound the worst case time complexity for a partic-
ular problem. For example, if we assume nothing about the order of the list to be searched,
any algorithm must loop through the entire list in the worst case, taking at least linear
time. Since linear_search takes ®(n) in the worst case, it optimal, in the sense that no
other algorithm has a better worst case time complexity. Similarly, it can be shown that
any sorting algorithm™ takes at least Q)(nlogn) time in the worst case. Since merge sort
takes ©(nlog n) in the worst case, it is — in a sense — an optimal sorting algorithm.

Lastly, when stating the time complexity of 1inear_search, we should report both the
worst case and best case time complexities. We should not say that the “time complexity is
O(n) and Q)(1)”, because this is needlessly imprecise. For instance, the previous statement
also holds for an algorithm which takes time @ (/1) in both the best and worst cases.

Binary Search

Linear search has the best possible worst case time complexity if we make no assumption
on the input list. But what if the input is sorted? It turns out that we can do much better.

To motivate the algorithm, remember the following game (you have probably played
it before while on a long road trip). I am thinking of a number between 1 and 100. Your
task is to guess the number in as few guesses as possible. After each guess, I tell you
whether your guess is too high, too low, or that it is correct.

If you were a fan of linear_search, you might try guessing 1 first, and then 2, and
then 3, and so on, until you eventually come to the correct number. But this strategy feels
very inefficient. Instead, you might try guessing 50 first. I tell you that 50 is too high of
a number, and to guess again. With this information, you can immediately rule out not
only 50, but also every number greater than 50 — half of the possibilities! In fact, the only
valid guesses remaining are 1 through 49. You try the same strategy again, and guess
25. I tell you that this is too low. Now you know that the number is between 26 and 49.

But not always! We may also use the average case time complexity of an algorithm, which is potentially
much better than its worst case performance. Computing the average case time complexity can be difficult.

12We are leaving out many details of the comparison. It is conceivable that insertion sort’s worst case
occurs on a very rare input, and that the average case time complexity is much better. It turns out, however,
that insertion sort’s average case time complexity is also quadratic. In general, however, describing the
performance of algorithm based on its worst case complexity can be misleading.

13To be more precise, any comparison sorting algorithm which works by comparing the list’s elements to
one another.
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Algorithm 4 Binary search

import math

def binary_search(things, target, start, stop):
Searches things[start:stop] for the target.
Assumes that “things™ s sorted.
if start >= stop:
return None

middle = math.floor((start + stop) / 2)
if things[middle] == target:
return middle
elif things[middle] > target:
return binary_search(things, target, start, middle)
else:
return binary_search(things, target, middle + 1, stop)

You continue on, at each step halving the number of possibilities, until you find that the
number I was thinking of was 42. This is the principle idea behind binary search, a very
fast search algorithm whose code is shown in Algorithm .

Binary search shares some similarities with merge short. At every step, it breaks the
array into two pieces™. Unlike merge sort, it recursively searches only one of the pieces,
and not both. This is possible only because things is assumed to be sorted. Once we
compare the target to the middle element of the array, we know that we only need to
check either the left half or the right half, precisely because the list is sorted.

Time Complexity of Binary Search

Like linear search, binary search will also have a best case time complexity and a worst case
time complexity. In the best case, the thing we are looking for is right at the middle of
the list, and the answer is returned without making any recursive calls. Hence the best
case time complexity is @(1). The worst case input for linear search is also the worst case
for binary search: the item we are looking for isn’t in the list. Computing the time com-

14We do not physically break the array into two pieces by slicing, as we did in merge sort. That is because
slicing produces a copy, and copying takes linear time. Copying was necessary in merge sort, but it is not
necessary here — we instead keep track of the index of the middle of the list.
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plexity in this situation is similar to the analysis of merge sort in that it requires solving a
recurrence relation.

Let Tworst(17) be the time binary search takes whenever n = stop — start, but target
is not in things. Apart from the recursive call, everything else — computing the floor,
checking whether the middle element is the target, etc. — takes constant time. Although
there are two appearances of binary_search within the function body, only one of them
will run on a given call. Whichever call is made, it operates on a sub-array of things that
has at most 11/2 elements. Therefore, the time it takes is at most Tiyorst(71/2). We therefore
arrive at the following recurrence relation:

0(1), n=1

Twors =
t(n) {Tworst(n/z) + ®(1>/ n>2

As mentioned in the previous section, we can replace ©(1) by 1 as long as we are OK with
a final answer in @-notation. Making this substitution:

_ 1/ n = 1
Tworst(n/2) +1, n>2

Now we solve the recurrence by unrolling it. Since Tworst(11/2) = Tworst(n/4) + 1, we
have:

= (Tworst(n/4) + 1) +1,
= worst(n/4) + 2.

And since Tyorst(11/4) = Tworst(1/8) + 1, we also have:

(Tworst(n/8) + 1) + 2/
Tworst(”/8) + 3.

Continuing in this way, we see that on the kth step:

= Tworst(”/zk) +k.
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We know that Tyorst(1) takes constant time, since this is the base case of the recursion.
Therefore we iterate this process until 2F = n. Assuming that n is a perfect power of two,
this occurs when k = log, n. Substituting this value of k into the above, we find:

= Tworst(1/2!°827) 4+ 1 log, 1,
= Tworst(n/n) +log, n,

= Tworst(1) +log, 1,
=1+log, n,

= O(logn).

We have just shown that the worst case time complexity of binary search is ®(logn).
To get an idea of just how fast this is, consider the following: Suppose that 1inear_search
takes n nanoseconds to find an element in the worst case if the input is a list of size 1, while
binary_search takes logn nanoseconds in the worst case. It is estimated that there are
something like 10" grains of sand on Earth. Suppose we assign each a unique number and
line them up from least to greatest. In the worst case, linear search would take roughly
10" nanoseconds, or roughly 317 years, to search for a particular grain of sand. Binary
search, on the other hand, would take roughly 63 nanoseconds in the worst case. If you're
still not impressed, consider the same problem — but replace “grains of sand on Earth”
with “atoms in the known universe”. A loose estimate of this latter quantity is 10%°. In the
worst case, binary search can find a single atom — out of all of the atoms in the universe —
in roughly 265 nanoseconds.

If this seems like it is too fast to be true, remember that binary search makes an im-
portant assumption that linear search does not: it requires the input to be sorted. It turns
out that sorting a collection of n objects takes ()(nlog n) time in the worst case, which is
just slightly worse than Q)(n). Therefore, if you are given unsorted data and you're do-
ing a single search, linear search is actually better. But if you are doing many subsequent
searches you might consider sorting the data and using binary search thereafter.

2.4.2 Picking In-Flight Movies

Suppose you are on a long flight to Hawaii. The airline lost your baggage the last time
you flew with them, and so they’ve generously given you a voucher for two free in-flight
movies. In order to minimize your boredom, you decide to find two movies such that the
sum of their durations is as close as possible to the duration of your flight. That is, we
wish to solve the following computational problem:

GIVEN: A list of n positive movie durations dy,...,d,_1 and a positive flight
duration, .
COMPUTE: A pair of indices a,b € {0,...n — 1} such that |(d, +d,) — t] is
minimized.
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This is an optimization problem. The objective function is L(a,b) = |(d, + d},) — |,
and the search space is the set of all distinct pairs of numbers (a,b) taken from {1,...,n}.
The size of the search space is @ (n?), and so the brute force algorithm solves the problem
in quadratic time.

Shrinking the Search Space

Suppose now that the input durations are sorted; thatis, dy < d; < ... < d,_1. We will
design an algorithm which solves this problem in linear time™. While a brute force search
works by computing the objective function L on every element of the search space and
returning the minimizer, the new algorithm will eliminate large parts of the search space
on every iteration, shrinking it more and more until eventually nothing remains.

To see how the search space can be shrunk, consider the following concrete example.
The movies we can choose from have durations of 10, 20,40, 50, and 100 minutes, respec-
tively, and our flight length, ¢, is 65 minutes long (short flight!). Suppose we first try
pairing the shortest movie (10 minutes) with the longest (100 minutes). In total, these two
movies will run for 110 minutes. This is longer than the flight by 45 minutes! We now
need to check if there is a better pair, but must we check all of them? No! Note that any
other pair involving the 100 minute movie will have at least as long of a total run time,
since the 10 minute movie was the shortest! In other words, out of any pair of movies
containing the 100 minute movie, this pair was the best possible. Hence we do not need
to check these other pairs: we can effectively eliminate any containing the 100 minute
movie from the search space.

Next, we again consider pairing the shortest remaining movie with the longest. The
shortest movie is still the 10 minute movie, but the longest remaining movie is the 50
minute movie. This pair has total duration of 60 minutes, which is 5 minutes less than
the flight duration. This is much better than the previous pairing, and is the best we
have seen so far. We still need to check that there isn’t a better pairing, however. We do
not need to consider pairings which involve the 100 minute movie — these have already
been eliminated. But we also no longer need to consider pairings containing the 10 minute
movie. To see why, note that pairing any other remaining movie with the 10 minute movie
can only decrease the total run time, moving it further from the target of 65 minutes. Hence
we no longer need to consider pairs involving the 10 minute movie.

We continue on like this, at each step considering the pair of the shortest and longest
remaining movies. If the total run time is longer than the target of 65 minutes, we elim-
inate the longer movie; otherwise we eliminate the shorter of the two. We keep track of
the best pair seen so far, and return it once we have eliminated all pairs.

151f the input is not sorted, we can use merge sort to first sort them in @ (1 log n) time, resulting in an overall
time complexity of ©(nlogn) + ©(n) = O(nlogn).
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Algorithm 5 Find the pair of movies whose total duration is closest to the target.

def optimize_entertainment(durations, target):
shortest = 0
longest = len(durations) - 1

best_pair = None
best_objective = float('inf')

for i in range(len(durations) - 1):
total_duration = durations[shortest] + durations[longest]

if abs(total_duration - target) < best_objective:
best_objective = abs(total_duration - target)
best_pair = (shortest, longest)

if total_duration == target:
return (shortest, longest)

elif total_duration < target:
shortest += 1

else: # total_duration > target
longest —= 1

return best_pair

Implementation

We now turn the intuition we’ve gained from this concrete example into the algorithm
shown in Algorithm BH. We are given as input a list durations which contains the movie
durations in ascending order, along with a floating-point number target which repre-
sents the target duration (i.e., the duration of the flight). We first introduce variables
shortest and longest which will hold the indices of the shortest and longest remaining
movies in durations, respectively. At the beginning of the algorithm, no movie pairs have
been eliminated, so shortest = 0 and longest = len(durations) - 1. Also introduce
a variable best_objective, which contains the smallest value of the objective seen so far,
and a variable best_pair, which tracks the corresponding pair of movies.

We then begin iterating. At every iteration, we will check the pair containing the
shortest remaining movie and the longest remaining movie. We compare this pair to the
best pair seen so far; if it is better, we update best_objective and best_pair. Having
done this, we next shrink the search space for the next iteration. If the total duration of
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the pair is exactly equal to the target, we can simply return the pair without proceeding
to the next iteration, since it is not possible to do better than this. On the other hand, if
the total duration of this pair is longer than the target, we can eliminate the longer movie
following the logic from the previous part. We must then update longest so that it is the
index of the longest movie remaining. Because durations is sorted, this index is simply
longest - 1, and we therefore update longest by decrementing it. Likewise, if the total
duration of the pair is shorter than the target, we eliminate the shorter of the pair by
incrementing shortest.

We iterate until shortest and longest are equal to each other, as at that point all
pairs consisting of unique movies have been eliminated. We could implement this with
a while-loop, but we in fact know exactly how many iterations should be performed.
Before the loop begins, the difference between shortest and longest is n — 1, where n is
the number of movies. With each iteration, the difference between the two decreases by
one. After n — 1 iterations, the difference will be zero, and we should terminate the loop.
Therefore, we iterate n — 1 times.
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