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1.1 The Wisdom of the Crowd

Suppose that you are a contestant on a game show. In order to win the prize – free tuition
at UCSD for one year – you must guess the height of the Geisel Library to within 10 feet.
You’re unsure of the answer, but, luckily, you’re allowed to poll the television audience
for their best guesses. Aggregating their responses is likely to produce a guess that is
more accurate than your own – a phenomenon known as the “wisdom of the crowd”.1

If you adopt this strategy, your next step is to decide how, exactly, to aggregate the
audience’s guesses. There are many approaches, but a natural one is to view aggregation
as compression. That is, you wish to find a single number θ which is somehow represen-
tative of the data set. Of course, some information is lost by compressing a collection of
numbers into a single number, θ; naturally, you wish to choose θ so as to minimize this
loss.

More formally, the information lost when a data point xi is represented by a different
number θ can be quantified by choosing a loss function. You decide to use a popular
choice, the square loss:

ℓsq(xi, θ) = (xi − θ)2.

The smaller the value of ℓsq(xi, θ), the better θ is thought to represent xi. If you take the
position that a good representative of the data set is one which is, on average, a good rep-
resentative of each data point, then the goal of compression is to find a θ which minimizes
the average square loss:

Lsq(θ) =
1
n

n

∑
i=1

ℓsq(xi, θ).

This is a very important step on your way towards winning a year’s tuition: you
have transformed the vague strategy of aggregating the crowd’s guesses into a precise
computational problem:

GIVEN: Real numbers x1, . . . , xn.
COMPUTE: A real number θ minimizing the average square loss, Lsq.

Having stated the problem, your next task is to find an algorithm for producing the so-
lution. And since the television audience consists of thousands, if not millions of people,
each contributing one number to the data set, you will need to run your algorithm on the

1https://en.wikipedia.org/wiki/Wisdom_of_the_crowd

https://en.wikipedia.org/wiki/Wisdom_of_the_crowd
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computer you have available to you. It should be able to produce its result in a reasonable
amount of time.

It is not too hard to code up a Python function for computing the value of Lsq given
some data and a particular θ:

def average_square_loss(theta, data):
total_loss = 0
for x in data:

total_loss += (x - theta)**2
return total_loss / len(data)

You can use this function to try several different values of θ in an effort to find that with
the smallest average loss. But there are infinitely2 many real numbers to try, and checking
all of them is simply impossible. Your algorithm will have to be a bit more clever.

You remember that minimizing a function can often be done via calculus, and, coin-
cidentally, the loss function you have chosen is differentiable. To find the minimizer of
Lsq(θ), you first take the derivative with respect to θ:

dLsq

dθ
=

d
dθ

[
1
n

n

∑
i=1

(xi − θ)2

]
.

The derivative operator can be pushed inside of the summation:

=
1
n

n

∑
i=1

d
dθ

(xi − θ)2.

A careful application of the chain rule results in:

=
2
n

n

∑
i=1

(θ − xi).

To minimize L(θ) over all possible θ, you set the derivative to zero and solve for θ:

dLsq

dθ
= 0

=⇒ 2
n

n

∑
i=1

(θ − xi) = 0.

Dividing both sides by two:

=⇒ 1
n

n

∑
i=1

(θ − xi) = 0.

2An uncountable infinity.
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The summation can be split into two summations:

=⇒ 1
n

n

∑
i=1

θ − 1
n

n

∑
i=1

xi = 0,

=⇒ 1
n

n

∑
i=1

θ =
1
n

n

∑
i=1

xi.

Since θ is a constant, you can pull it out of the first summation:

=⇒ θ

n

n

∑
i=1

1 =
1
n

n

∑
i=1

xi,

=⇒ θ

n
· n =

1
n

n

∑
i=1

xi.

=⇒ θ =
1
n

n

∑
i=1

xi.

In other words, L(θ) is minimized by choosing θ to be the mean, 1
n ∑n

i=1 xi.
This little bit of calculus has turned a seemingly impossible computational problem

into an easy one. Instead of computing L(θ) for every possible value of θ and returning
that which produces the smallest value, we can compute the minimizer directly by com-
puting the mean. That is, the earlier computational problem is equivalent to the following:

GIVEN: Real numbers x1, . . . , xn.
COMPUTE: Their mean, 1

n ∑n
i=1 xi.

This computational problem has a straightforward algorithmic solution, coded in Python
below:

def mean(data):
"""Assume len(data) > 0."""
total = 0
for x in data:

total += x
return total / len(data)

With this practical algorithm in hand, you have everything you need in order to aggregate
the audience’s guesses and estimate your way to a year of free tuition.

1.2 The Components of a Data Science Problem
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0) The objective.

1) A formalization of the
objective as a computational
problem involving data.

2) An efficient algorithm
solving the problem.

3) An implementation of
the algorithm at scale.

The game show example of the previous section,
while simple, has all of the components of a typ-
ical data science problem. Such a problem starts
with a high-level objective. Above, the objective
was to predict the height of the Geisel Library as
accurately as possible. Other objectives might be
to determine whether an image contains a pedes-
trian, decide whether a new medical treatment is
effective, or to discover trends in how people move
around a city.

1.2.1 The Computational Problem

Once the objective has been stated, there are typi-
cally many approaches to reaching it. For instance,
one person might try to determine the height of
Geisel by imagining it next to a structure they do
know the height of, while another might rely on luck and take a random guess. The
strategy of the data scientist is to gather data and translate the objective into a precise
computational problem. In the previous section, we opted to gather guesses from the
audience and aggregate them by minimizing the average square loss.

There is typically no single way to go from a high-level objective to a precise computa-
tional problem, and the choices we make in this transition has major implications for the
feasibility of finding a solution and the quality of the outcome. As such, this step often
requires careful analysis. For instance, some thought shows that the square loss ℓsq(xi, θ)
demands a high price for data points xi which are far from the proposed θ. As such, the
average square loss may be dominated by outliers. Practically, this means that if a mem-
ber of the audience is a very bad guesser (or worse, is malicious in their response), the
aggregated answer obtained by minimized the average square loss will be inaccurate. It
might be better, therefore, to pick a loss function that is less sensitive to outliers.

Probability and statistics are often used to translate an objective into a computational
problem. For example, we may assume that the guesses of the audience are random
variables following some probability distribution whose peak is located at the true height
of the Geisel Library. In this view, a natural computational problem is to use the data to
estimate the distribution and recover this peak. Furthermore, framing the problem as a
statistical one often allows us to compute confidence intervals – if the audience’s guess
comes with low confidence, we might decide to go with our own best guess instead.

Translating the objective to a computational problem is a crucial step in solving a data
science problem, and it is a major focus of DSC 40A. This course will mostly be concerned
with the components which follow.
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1.2.2 The Algorithm

The next component of the data science problem roadmap is an efficient algorithm which
solves the computation problem that has been posed. Making the leap from a problem to
an algorithm can involve several steps in itself:

Analyze the problem. By analyzing the problem, we hope to understand the nature of
solution in a way that helps us with designing or choosing an algorithm. The result of
this step is often the transformation of the original problem into an equivalent one that is
easier to solve. For instance, in the last section, we analyzed the problem of minimizing
the average square loss using calculus. We found that this problem has the same solution
as that of computing the mean of a data set.

Design an algorithm. Once we understand the nature of the problem’s solution, we
begin the process of designing an algorithm for computing it. For instance, knowing that
the mean minimizes the average square loss, there is an obvious algorithmic solution:
we loop over the numbers in the data set, cumulatively keeping track of their sum, and
finally return the sum divided by the size of the set. This is the algorithm implemented
by the Python code at the end of the previous section, but it should be noted that this is
not the only algorithm for computing the mean. In fact, the next section will investigate a
different algorithm which is in some ways superior.

The computational problem of computing the mean has a simple and straightforward
algorithm associated with it, but this is not always the case. When an efficient algorithm
is not so efficient, it is often helpful to try several algorithm design patterns. We will en-
counter some of these patterns, such as divide-and-conquer, in this course. Other strate-
gies, like dynamic programming, are outside of the scope of DSC 40B, but are maybe
worth studying independently – you might encounter them in an algorithms-focused job
interview.

Prove the algorithm’s correctness. The algorithm we listed above for computing the
mean is evidently correct, but the correctness of many algorithms is not so straightfor-
ward to assess. For instance, algorithms for sorting a list of numbers can become quite
complicated and their correctness can be difficult to prove. Case in point, Timsort, the
sorting algorithm used by Python and Java, was found to contain a logical error by a team
of computer scientists in 20153, over 13 years after it was first implemented. The Python
implementation of the algorithm only triggered the error for inputs of a very, very large
size (so large that such inputs were never seen), but the Java implementation of Timsort
on Android was susceptible to failure for certain lists whose size was as small as 65,536.

3de Gouw, Stijn; Rot, Jurriaan; de Boer, Frank S.; Bubel, Richard; Hähnle, Reiner (July 2015). "OpenJDK’s
Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case"
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We will develop one tool for proving the correctness of algorithms in the next section –
the loop invariant. Loop invariants are useful for not only proving that an iterative algo-
rithm does what we expect it to do, but also for understanding how the algorithm works.
This is important, since one of the most common approaches to designing an algorithm
is to modify an existing one – a task which is made possible only if we understand the
workings of the algorithm we’re trying the modify.

Analyze the algorithm’s efficiency. In practice, the correctness of an algorithm alone
does not mean that it is useful – it must also be efficient. Therefore, once we have a correct
algorithm, we must analyze its usage of computational resources, including processor
time and memory. In the coming sections, we will introduce tools and a notation for
assessing the efficiency of algorithms.

An algorithm which takes a minute to run on a data set of 1,000 images may take
weeks (or longer) to run on a data set of 100,000 images. On such a large data set, this
algorithm is effectively useless, and we must return to the algorithm design step in order
to produce a faster algorithm. Improved performance often comes at the cost of using a
more complicated algorithm design pattern.

But sometimes, no matter how clever we are, we cannot find an efficient algorithm for
solving our computational problem. In fact, computer scientists have good reason to be-
lieve that some problems4 are so hard that an efficient algorithm for solving them simply
does not exist. Moreover, these problems aren’t all that exotic – many of the computational
problems we might pose in data science fall into this group.

If it turns out that the computational problem itself is too hard to solve, we have sev-
eral options. First, we can go back and choose a different computational problem. It is
sometimes the case that an intractable computational problem becomes efficiently solv-
able after it is modified slightly. Ideally, the solution of the modified problem retains the
important properties of a solution to the original. Second, we may give up on trying to
find an exact solution, and settle instead for an approximate one. Even then, some problems
are so hard that it is thought to be impossible to efficiently approximate their solutions.

1.2.3 The Implementation and Beyond

Once the algorithm has been designed an analyzed, it must be implemented. In this sim-
plest case, this just means coding up the algorithm in a programming language, or even
carrying it with pencil and paper. In other cases, such as when we have a truly massive
data set, we must optimize our code and make infrastructure decisions which allow the
implementation to scale. This is by no means an easy task, and it is largely outside of the
scope of DSC 40B.

4For instance, the problems which are said to be “NP-Hard”.
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1.2.4 “Solving” a Data Science Problem

We have seen that a data science problem has several components: a high-level objective,
a formal computational problem, an algorithm, and an implementation. Solving a data
science problem consists in choosing each of these components. Of course, there are many
choices to be made: there is more than one way to formalize the objective, each with its
positives and negatives; any resulting computational problem may have many algorithms
which solve it; and there are many possible implementations of any one algorithm.

As a result, the landscape of solutions takes the form of a many-branching tree:

The Objective

Problem 1

Algorithm 1

Implementation 1 Implementation 2

Algorithm 2

Problem 2

If a solution to a data science problem is a path in this tree, a data scientist is someone
who is comfortable in navigating it. They are able to formalize problems, design and
assess algorithms, and implement them. Other disciplines have something to say about
each of these steps, of course. Statisticians specialize in posing the computational problem
and studying the nature of their solutions, computer scientists focus on designing and
analyzing algorithms, and engineers concentrate on implementation. In this view, a data
scientist is a generalist.

But such a generalist is necessary, because navigating this tree is rarely a linear pro-
cess. After trying and failing to find an efficient solution for a particular computational
problem, you might decide to solve a different problem altogether, moving back up the
tree and down a different branch. This new problem may formalize the same overarching
objective, but in a fundamentally different way. This is important to keep in mind, because
while solving a data science problem involves choosing a path down the tree, interpreting
the output of your solution involves walking back up the tree, back to the objective.

1.3 Correctness

Once we have formalized a computational problem involving data, we set about design-
ing an algorithm to solve it. At a minimum, we want our algorithm to be correct. One
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approach to assessing the correctness of an algorithm is to verify that is produces the cor-
rect output for each input in a small set of inputs called test cases. While certainly a good
practice for testing the implementation of an algorithm, this approach has a big downside:
it is always possible that some input results in the failure of your algorithm, but your test
cases do not include it. Instead, we are interested in proving that the algorithm produces
the correct output for every possible input.

Proving the correctness of an algorithm in this way has more than just academic ben-
efits – it forces us to understand how the algorithm works at a fundamental level. This is
important, since one of the main strategies we have for designing a new algorithm is to
modify an existing one – a process that is much easier if we thoroughly understand the
algorithm being modified.

1.3.1 Loop Invariants

Consider again the straightforward algorithm for computing the mean. The algorithm’s
Python implementation is shown below:

1 def mean(data):
2 """Assume len(data) > 0."""
3 total = 0
4 for x in data:
5 total += x
6 return total / len(data)

If we want to prove that this algorithm is correct, we need to show that its return value,
total / len(data), is indeed the mean of the numbers in data. We will assume that
Python correctly computes the number of items in data when len(data) is executed,
so proving the correctness of the return value boils down to proving that total does
actually contain the sum of all elements of data when execution reaches the last line of
the function. Of course, the value of total changes over the course of the function’s
execution, since it is computed iteratively inside a for-loop. Therefore, in order to prove
that total is computed correctly, we need to prove the correctness of the loop.

The primary tool we have for proving the correctness of a loop is the loop invariant.
As the name suggests, a loop invariant is a statement which is true before the loop ex-
ecutes and immediately after5 every iteration. A useful loop invariant says something
about the value of an important variable once the loop exits. In this case, a useful loop
invariant tells us about the value of total:

Invariant 1. After the αth iteration, total contains the sum of the first α elements of data.

5Or immediately before every loop – either way.
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Remember that a loop invariant should also say something about the status of the
program before the loop executes, but the above invariant seems to only make a statement
about the status of the program after each loop. We have a clever way of getting around
this: Since the time immediately after iteration α − 1 is also the time right before iteration
α, we adopt the seemingly-strange convention that the time right before the first iteration
of the loop is also the time “immediately after zeroth iteration”. Therefore, plugging α = 0
into the invariant results in a statement about the status total immediately before the
loop begins execution.

You may think of a loop invariant as a whole collection of statements, one for each
value of α, where α can be any iteration number ranging from 0 (i.e., before the first itera-
tion) to the total number of iterations. For instance, replacing α by 42 yields the statement:
After the 42nd iteration, total contains the sum of the first 42 elements of data. More
useful is replacing α by the total number of iterations, n. In this case, the loop invariant
tells us that “After all n iterations (i.e., immediately after the loop exits), total is the sum
of the first n elements of data (i.e., all of the elements)”.

Which iteration? When writing loop invariants (and discussing loops in general)
we must be careful to distinguish the mathematical variables from the implementation
variables; i.e., the ones that appear in the code. To see the potential for confusion,
consider the following question: What is printed on the ith iteration of

for i in range(10): print(i)?

Observe that the question involves two instances of the 9th letter in the English al-
phabet: i and i. The first instance, i, is a mathematical variable, while i is an imple-
mentation variable. We typically start counting from 1 in mathematics, so the first
iteration corresponds to i = 1. But on the i = 1 iteration, the implementation variable
i = 0. Continuing on, the ith iteration prints the value of i − 1. On the other hand,
if we confuse i and i, we are likely to say that the code prints i on the ith iteration.
To avoid this confusion, we will use Greek letters (like α) as mathematical variables,
since Greek symbols don’t usually appear in code.

1.3.2 Proving a Loop Invariant

Simply stating a loop invariant does not make it true – we must prove that the invariant
is indeed correct. And since we can think of a loop invariant as a collection of statements,
one for each value of α, it may seem as though we will have to prove each statement in
the collection individually. Luckily, we will soon learn a clever mathematical technique
for proving all of the statements in one fell swoop.

But to begin, let’s try proving all of the statements, one-by-one, starting with the state-
ment that results from taking α = 0. This statement reads: “After the zeroth iteration,
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total contains the sum of the first zero elements of data”. We understand that “the ze-
roth iteration” conventionally refers to the time immediately before the first iteration of
the loop. At this point in time, total has been initialized to zero. Again by convention,
the sum of zero elements is zero. Hence total is the sum of the first zero elements, and the
statement corresponding to α = 0 is true. Since the “zeroth iteration” refers to the point
in time right before the initial iteration of the loop, proving this statement is referred to as
initialization.

Next we prove the statement corresponding to α = 1: “After the first iteration of the
loop, total contains the (sum of the) first element of data.” During the first iteration,
total is updated by adding x, which takes the value of the first element of data. From
proving the invariant for α = 0, we know that total enters the iteration with a value of
zero. Hence, during the first iteration, total becomes 0+ x = x, which is the first element
of data. This proves the statement corresponding to α = 1.

Next we prove the statement corresponding to α = 2: “After the second iteration of
the loop, total contains the sum of the first two elements of data.” On this iteration, x
takes the value of the second entry of data. The statement for α = 1 says that total enters
the second iteration as the sum of the first element of data. During the second iteration,
total becomes the sum of the first element of data and x, which is the second. Therefore,
at the end of the iteration, total is the sum of the first two elements of data, and so the
statement is proven.

We could continue on in this way, proving the statements for α = 3, α = 4, and so on.
But notice that the argument for α = 1 was nearly identical to the argument for α = 2;
the arguments for α = 3 and above will be very similar, as well. Instead of writing each
argument separately, we will write a single argument that works for any iteration number,
α, saving ourselves a ton of work.

Observe that a common feature of our arguments for α = 1 and α = 2 is that, in each
case, we use the value of total as it was at the end of the prior iteration. That is, we
used the statement about the zeroth iteration to prove the statement for the first iteration,
and we used the statement for the first iteration to prove the statement for the second. In
general, we will use the statement for the (α− 1)th iteration to prove the statement for the
αth.

We now do something clever: we take α to be some arbitrary iteration number between
one and the total number of iterations, and we assume that the statement for α − 1 is
true. We then use this assumption to prove that the statement for α is true, as well. This
is process is called maintenance, since it proves that the truth of the loop invariant is
maintained across an arbitrary iteration.

Here is what maintenance looks like for the current problem. First, we assume that
after the (α − 1)th iteration, total contains the sum of the first α − 1 elements of data.
On the αth iteration, total is updated by adding x, whose value is the αth element of
data. Hence total becomes the result of adding the αth element of data to the sum of the
first (α − 1) elements. This is just the sum of the first α elements. Therefore, at the end of
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the iteration, total will contain the sum of the first α elements of data, and the claim is
proven.

It may seem that we are being sloppy by assuming that the statement for the previous
iteration is true, but we can do this precisely because we have proven that the statement
for α = 0 is true during the intialization step above. Since the statement is true for α = 0,
our maintenance argument implies that it is true for α = 1. Since it is true for α = 1, we
can re-apply our maintenance argument to conclude that it is true for α = 2, and so on.
Once we prove initialization and maintenance, we set off a chain-reaction of proving, and
all of the statements, for every value of α, fall like dominoes6.

To recap, we can prove that a loop invariant is true via a two-step process:

1. Initialize: Show that the invariant holds before the first iteration of the loop.

2. Maintain: Prove that if the invariant holds after the (α − 1)th iteration, it will still
hold after the αth.

To then prove that the loop is correct, we then show that the loop terminates, and translate
the loop invariant to a statement about the status of the algorithm after the loop ends.
In this case, the loop clearly terminates after it has run through all n elements of data.
Substituting α = n into the loop invariant, we find that “After the nth (last) iteration,
total contains the sum of the first n elements of data (i.e., all of the elements).” Thus, the
loop correctly calculates total.

1.3.3 A More Complicated Algorithm

We have shown that the above algorithm for computing the mean is logically correct:
when implemented on an idealized computer, it will indeed compute exactly the mean
for every possible input. But actual computers are not ideal; in particular, they can only
represent real numbers to a finite number of decimal places. One of the implications of
this finite precision is roundoff error, in which adding a large number and a small number
results in a loss of accuracy. You can see this for yourself by opening a Python interpreter
and writing

>>> 1e16 + 1 - 1e16

Mathematically, the result of this calculation should be 1, of course. But Python – and any
other language using the standard implementation of floating point numbers – will give
a result of 0.

It turns out that – while the above algorithm is logically correct – the implementa-
tion can run into precision issues. In particular, the operation on line 5, total += x, can
incur roundoff error when total is very large and x is very small, or vice versa. In criti-
cal applications, a different algorithm is used for computing the mean – one which only

6You may have seen this style of proof before; it is known as (weak) mathematical induction.
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adds numbers which are likely to be on the same order of magnitude, thereby avoiding
roundoff error. The Python implementation of this algorithm is shown below:

1 def running_mean(data):
2 """Assume len(data) > 0."""
3 current_mean = data[0]
4 count = 1
5 for x in data[1:]: # data[1], data[2], ...
6 count += 1
7 current_mean += (x - current_mean)/count
8 return current_mean

The logical correctness of this algorithm is not quite as obvious as that of the straight-
forward algorithm. We wish to show that the value of current_mean is indeed the mean
of the data when the algorithm ceases execution. But current_mean is iteratively com-
puted by a for-loop. Therefore, we will state and prove a loop invariant which will be
useful in proving the correctness of the algorithm as a whole.

Invariant 2. After the αth iteration of the loop, current_mean stores the mean of the first
α + 1 elements of data.

Assuming for the moment that this loop invariant is true, we can use it to prove the
overall correctness of the algorithm; we simply need to argue that the loop terminates
after len(data) − 1 iterations. Since the loop iterates through each of the len(data) − 1
elements of data[1:] in turn, this is indeed the case. Therefore, taking α = len(data) in
the loop invariant and doing some translation from mathematics into English, we obtain
the following: “After len(data) iterations of the loop, current_mean stores the mean of
the first len(data) elements of data (i.e., all of the elements).”

We prove the loop invariant by first initializing, then maintaining. To initialize, we
prove that the invariant is true before the execution of the loop begins. Plugging α = 0 into
the invariant, we obtain the statement: “After the 0th iteration of the loop, current_mean
stores the mean of the first 0 + 1 = 1 elements of data.” Looking again at the algorithm,
current_mean is initialized to be the first element of data in line 1. Since the mean of
one number is just that number, current_mean is indeed the mean of the first element
immediately prior to the first iteration of the loop. This proves initialization.

Next, we maintain. Let α ∈ {1, 2, 3, . . .} be an arbitrary iteration number. We first
assume that the invariant holds after the (α − 1)th iteration (i.e., the previous iteration).
Plugging α − 1 into the loop invariant yields the statement: “After the (α − 1)th iteration
of the loop, current_mean stores the mean of the first (α − 1) + 1 = α elements of data”.
Taking this statement as true, we wish to prove that after one more iteration, the value
stored in current_mean will be the mean of the first α + 1 elements of the list.

Two things happen on each iteration. First, count is incremented by one. It is easy
to see that on the αth iteration, count is incremented from α to α + 1; if we wished to be
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rigorous, we could prove this with its own loop invariant. Next, current_mean is updated
according to the code

current_mean = current_mean + (x - current_mean) / count, (1.1)

where x takes on the value of the (α + 1)th element of the list.
We now introduce a bit of notation. For any t ∈ {0, 1, 2, . . .}, let St denote the sum

of the first t elements of data, where we define S0 to be 0 by convention. Note that the
mean of the first t elements of the list is then St/t. We have assumed that after the (α −
1)th iteration, current_mean holds the mean of the first α elements of the list. That is,
current_mean = Sα/α. Using this piece of knowledge, along with the fact that count =
α + 1, the right hand side of Equation 1.1 becomes:

Sα

α
+

(
x − Sα

α

)
· 1

α + 1
,

Our goal is to show that this is equal to the mean of the first α + 1 elements of the list,
Sα+1/(α + 1). Collecting the terms involving Sα, we find:(

1 − 1
α + 1

)
Sα

α
+

x
α + 1

.

Noting that (1 − 1/(α + 1)) = α/(α + 1), we see that the above is equal to:

α

α + 1
· Sα

α
+

x
α + 1

=
Sα−1 + x

α + 1
.

Since x is the (α + 1)th element of the list, Sα + x = Sα+1, and the above is simply
Sα+1/(α + 1), as desired. This proves the maintenance step.

Together, initialization and maintenance prove the loop invariant. We next show that
the loop terminates. This simple for-loop clearly exits after len(data) - 1 iterations.
Therefore, we use the loop invariant to conclude that “After len(data) iterations of the
loop, current_mean stores the mean of the first len(data) elements of data (i.e., all of the
elements).” That is, the algorithm is correct.

1.3.4 Nested Loop Invariants

Consider Algorithm 1 which computes the mean of an n × n array of numbers in the
straightforward way. In order to prove its correctness, we want to show that total con-
tains the sum of all entries of the array at the end of the algorithm’s execution. As before,
total is computed iteratively by a for-loop, and so proving the correctness of the algo-
rithm as a whole depends upon proving the correctness of a loop, which is precisely what
we use loop invariants to do.
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Algorithm 1 Computing the mean of an array.
def array_mean(arr):

"""Compute the mean of an n-by-n array of numbers."""
total = 0
n = len(arr) # the number of rows in the array
for i in range(n):

row_total = 0
for j in range(n):

row_total += arr[i, j]
total += row_total

return total / n**2

In this case, however, we have two loops: an inner loop over j and an outer loop7 over
i. As such, we will have two loop invariants, one for the inner loop and one for the outer.
We begin by stating a loop invariant for the outer loop:

Invariant 3. After the αth iteration of the outer loop, total contains the sum of the ele-
ments of the first α rows of arr.

As before, proving the loop invariant involves an initialization step and a maintenance
step. In the maintenance argument, we assume that after the (α − 1)th iteration of the
outer loop, total contains the sum of the elements of the first α − 1 rows of arr, and we
wish to show that after another iteration it contains the sum of the first α rows. Looking
back at the algorithm’s code, total is updated at the end of each iteration of the outer
loop by adding row_total to it. Evidently, row_total should contain the sum of the αth
row of the array. Since row_total is computed by the inner loop, we need to prove a
second loop invariant:

Invariant 4. After the βth iteration of the inner loop, and during the αth iteration of the
outer loop, row_total contains the sum of the first β elements of the αth row of the array.

To initialize, we argue that before execution of the inner loop, row_total is set to 0
and therefore contains the sum of the first β elements of the αth row (since the sum of an
empty set of numbers is by convention 0). To maintain, we assume that after the (β − 1)th
iteration of the inner loop during the αth iteration of the outer loop, row_total contains
the sum of the first β − 1 elements of the αth row. On the βth iteration of the inner loop, j
has value β − 1. Hence we add arr[α-1, β-1] to row_total, which we recognize as be-
ing the βth element of the αth row of the array. As a result, after this iteration, row_total
contains the sum of the first β elements of the αth row.

7Remember that in this situation, the inner loop will iterate from 0 to n − 1 for every iteration of the outer
loop.
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At this point we have proven the loop invariant for the inner loop, now we need to
use it. The second loop makes n executions. After the nth iteration, the loop exits and the
loop invariant reads: “row_total contains the sum of the first n elements of the αth row
of the array.” In other words, it contains the sum of the αth row.

We can use this fact to prove the loop invariant for the outer loop. To initialize, we
recognize that before the execution of the outer loop, total is 0 as desired. To maintain,
we assume that after the (α− 1)th iteration, row_total is the sum of the first α− 1 rows of
the array. The loop invariant for the inner loop tells us that at the end of the αth iteration,
row_total is the sum of the elements in the αth row of the array. Since we add row_total
to total at the end of each iteration of the outer loop, after the αth iteration total is the
sum of the first α rows of the array.

This proves the outer loop invariant. Since the outer loop also runs n times, the loop
invariant tells us that after the loop executes, total is the sum of the first n rows of the ar-
ray, i.e., all of the rows of the array. Since we return this total divided by n2, the correctness
of the algorithm has been proven.

1.4 Efficiency

Once we have shown that an algorithm is correct, we must then analyze the computation
resources it uses. An algorithm that is guaranteed to produce the correct result is useless
if it requires an impractical amount of time or memory to do so. In this section, we will
develop tools for assessing the efficiency of algorithms.

1.4.1 Time Complexity Analysis

Suppose that you and I both have our favorite algorithms for computing the mean, and I
claim that my algorithm is faster. To settle the matter, we each implement our algorithms
on our own computers and time their execution on the same benchmark data set. While
a good first test of performance, this approach has some serious flaws. For instance, my
computer might be faster or slower than yours, which makes any absolute timing hard to
interpret. If we find that your algorithm takes 1 second on your laptop but my algorithm
takes 0.1 seconds on my lab computer, it may just be that my computer is faster. We still
don’t know whether mine is a good, efficient algorithm.

Of course, it would be more fair to run both of the algorithms on the same computer.
While better, this doesn’t quite solve the problem. First, some algorithms are better suited
to some hardware configurations than others. For example, maybe my algorithm is fast
when run on the GPU in my computer, but significantly slower on computers without a
GPU. Second, some algorithms are fast on certain inputs and slow on others. If we find
that the your algorithm is slower, how can we be sure that it’s slower in general, and not
just on that particular input? Lastly, some algorithms have a lot of overhead and are slow
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to start, but become relatively efficient when their input becomes bigger. Perhaps your
algorithm is slower than mine when run on an input of size 100, but faster than mine
when run on an input of size 1000.

In short, we want a method of assessing the speed of an algorithm that captures the
properties of the algorithm itself, and not the computer on which it is run. Moreover, we
are less concerned with the exact time it will take an algorithm to run, and instead wish to
describe the performance in relative terms as a function of the size of the input. We do this
by reasoning about the pseudocode of the algorithm in a process called time complexity
analysis.

1.4.2 The Time Complexity of Computing the Mean

Recall the straightforward algorithm for computing the mean:

def mean(data):
total = 0
for x in data:

total += x
return total / len(data)

How long will this algorithm take to run when called on a list with n elements?
Our strategy will be to analyze the algorithm line-by-line to estimate the time each line

takes to run; we will then add these estimates to obtain an estimate of the total time of ex-
ecution. Consider, for example, the first line of the algorithm: total = 0. This operation
of assigning zero to a variable takes different times on different computers, but note that
the time it takes will not depend on n, the size of the input list. We don’t have to decide
on the exact time it takes for now; let’s just assume that it takes a constant amount of time
c1. Later, when I run the algorithm on my computer or on your laptop, I can measure c1
for that specific machine and fill it in here.

Let’s do the same for return total / len(data). Here we are dividing a number
by the size of a list and returning the resulting number. While it may appear as though
the time it takes to compute the length of the list becomes bigger the more elements the
list has, this depends on the implementation of the data structure. Python’s lists keep
track of their size as they grow or shrink, so that asking for len(numbers) doesn’t depend
on how many numbers are actually stored in the list.8 Because of this, we can say that
this line takes time c2 to execute, where it is understood that c2 is a constant – it does not
depend on the size of the input list.

Next, consider the for-loop portion of the algorithm:

for x in data:
total += x

8The alternative, for example, is that Python would need to iterate through the list to count the number of
entries, which would take more time the longer the list.
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The big difference between these lines of code and the previous lines is, of course, that
those lines ran only once, while these lines will run a number of times which depends on
the size of the input list data.

Let’s put aside the first line for a moment and start with total += x. This step does
addition and assignment. The time it takes to run once does not depend on n, the size
of the input list. Let’s say that one execution of this line takes time c4. The body of the
for-loop runs once for each element in the list for a total of n times. Therefore, the total
time contributed by this line to the run time of the algorithm as a whole, summed over all
iterations, is c4 · n.

Now let’s go back and consider the first line: for x in data:. Python does a lot of
work in this line, and it isn’t all visible to us. Namely, it asks for the next entry of the
list (checking to make sure there is one) and assigns the result to x. Let’s say that the
time that it takes to do this process once is c3. How many times does this process happen
during the execution of the algorithm? One might guess that the answer is n, the size of
the list. It actually happens n + 1 times. This is due to how iteration works in Python
(and indeed, in most languages): Python keeps asking for the next element of the list until
the list responds that there are none left. On the nth ask, the list happily returns the nth
element. It isn’t until the (n + 1)th ask that the list says that it has no more elements to
give and the loop terminates. This issue of whether the line runs n times or n + 1 may be
rather subtle at first, but luckily it won’t matter too much in the end.

The below table gathers the time it takes to run each line once as well as the number
of executions of each line:

Time per exec. Number of execs.
def mean(data):

total = 0 c1 1
n = len(data) c2 1
for x in data: c3 n + 1

total += x c4 n
return total / n c5 1

To find the total time it takes to run the algorithm, we multiply the time it takes to run
each line once by the number of times that line is run, and sum these up. That is, the time
T(n) to run on an input of size n is:

T(n) = c1 + c2 + c3(n + 1) + c4 · n + c5,
= c3 · n + c4 · n + c1 + c2 + c3 + c5,
= (c3 + c4)n + (c1 + c2 + c4 + c5),
= cn + c′,

where in the last line we have defined c = c3 + c4 and c′ = c1 + c2 + c4 + c5.
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1.4.3 Scalability and Big-Theta

Now we could go measure c1, c2, . . . , c5 on an actual computer to come up with a formula
for the algorithm’s run time on that machine – but this isn’t typically all that useful. What
is useful, however, is the observation that the above formula is a linear function of n.
Importantly, this tells us that – no matter what computer we use – the algorithm will take
roughly twice as long if we double the input size (when the input is large enough). To see
this mathematically, look at the ratio:

T(2n)/T(n) =
2cn + c′

cn + c′
,

=
2cn

cn + c′
+

c′

cn + c′
.

When n is large, the first term is approximately two, whereas the second term is small.
Hence T(2n) ≈ 2T(n) when n is big.

The time scalability of an algorithm refers to how the time it takes to run grows with
the size of the input. Scalability is a major concern for data scientists because of the large
size of the data sets we encounter. For small data sizes, even an algorithm that scales
poorly will run in a reasonably amount of time. But as the size of the data set increases,
that same algorithm may start to take too much time to be usable. Our algorithm to com-
pute the mean scales linearly, which means that doubling the size of the input roughly
doubles the time it takes to run. But we will soon see algorithms which do not scale
linearly, and so that doubling the input size leads to larger increases in run time.

When comparing algorithms, we often care more about how each algorithm scales
with the size of the input rather than the precise value of the constants involved in the
calculation of its running time. The time complexity of an algorithm is an expression
of its efficiency with constants and lower-order terms dropped. We often write the time
complexity of an algorithm using the so-called Θ-notation (pronounced: “big-theta nota-
tion”). We will see the formal definition of Θ-notation shortly, but for now it suffices to
understand it as a notation which ignores constant factors and lower order terms. In the
case of the algorithm above, we saw that the run time was T(n) = cn + c′. Θ ignores the
factor of c and the lower-order term c′, so that we can simply write T(n) = Θ(n). If we
had instead found that T(n) = an2 + bn + c, we could have written T(n) = Θ(n2).

1.4.4 Nested Loops

The algorithm above had a single for-loop which iterated over all of the n data points,
resulting in a linear time complexity. Now consider the straightforward algorithm for
finding the mean of an n × n array of numbers shown in Algorithm 1 and reproduced
below for convenience:
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def array_mean(arr):
"""Compute the mean of an n-by-n array of numbers."""
total = 0
n = len(arr) # the number of rows in the array
for i in range(n):

row_total = 0
for j in range(n):

row_total += arr[i, j]
total += row_total

return total / n**2

We would like to compute the time complexity of this algorithm. As before, we could
construct a table detailing the time it takes for each line of the algorithm to run and the
number of times it is executed. However, since we often do not care about the precise
constants or lower-order terms involved in the expression for the running time, we can
afford to be a little “sloppy”. Intuitively, instead of analyzing each line of the algorithm,
we need only find the segment of code which contributes the highest-order term to the
running time calculation; this line determines the time complexity of the algorithm as a
whole.

Looking at the above code, we see that each line takes only a constant amount of time
per execution. Put another way, if we timed a single execution of total = 0, the time
would not change if we made the input array arr bigger or smaller. This is true for every
line of the algorithm – what differs between lines is how many times each is executed.
Since Θ-notation ignores constant factors and lower-order terms, it suffices to find the
line which is executed the greatest number of times.

Remember that arr is an n × n array. Let’s calculate the number of executions of each
line as function of n. Anything that isn’t in a for-loop runs once, no matter what n is. The
body of the outer for-loop runs n times. The outer for-loop’s first line, for i in range(n):
actually runs n + 1 times, since on the (n + 1)th iteration it discovers that there are no
more entries and it must exit. The body of the inner loop runs n times for each iter-
ation of the outer loop, and hence runs n2 times in total. The inner loop’s first line,
for j in range(n):, runs n + 1 times for each iteration of the outer loop, and hence
runs n(n + 1) times in total. These results are summarized in the table below:
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Number of execs.
def array_mean(arr):

total = 0 1
n = len(data) 1
for i in range(n) n + 1

row_total = 0 n
for j in range(n): n(n + 1)

row_total += arr[i, j] n2

total += row_total n
return total / n**2 1

The line that runs the most number of times is the first line of the inner loop – it is
executed n(n + 1) = n2 + n times. Therefore, n2 is the leading power of n in the total
runtime of the algorithm, T(n). Hence we say that T(n) = Θ(n2), i.e., the algorithm
has quadratic time complexity. Note that the line that is executed most runs n(n + 1)
times, whereas the body of the inner loop runs n2 times. Both are Θ(n2), and so it doesn’t
actually matter that for j in range(n): runs n times more: that n is ignored by Θ.

A common mistake is to believe that any algorithm involving two loops, one nested
inside the other, must necessarily take quadratic time, but this is not the case. For instance,
consider the artificial example below:

def nested_algorithm(data):
for x in data:

for y in range(4):
print(x * y)

Supposing that data has n elements, the above takes time Θ(n). This is because the body
of the inner loop runs a fixed number of times per each iteration of the outer loop. The
line which is executed the most is the second for-loop; it runs (4 + 1)n = 5n times in
total. After forgetting constants and lower order terms, this results in T(n) = Θ(n).

1.4.5 Nested Loops with Dependent Ranges

Recall that an n × n array is symmetric if its entries are mirrored over the diagonal; that
is, arr[i, j] = arr[j, i]. For example, the below array is symmetric:

arr = [
[0, 1, 2, 3],
[1, 4, 5, 6],
[2, 5, 7, 8],
[3, 6, 8, 9],

]
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To compute the mean of a symmetric array, we could, of course, use the function
array_mean given above. But this function seems somewhat suboptimal: its nested loops
total the entries of the array by iterating over all of its elements, whereas about half of the
elements of a symmetric array are duplicates. A more efficient approach is to compute
the total by iterating over only those elements of the array which are along or to the right
of the diagonal. We count each diagonal element once, but an element arr[i,j] (j > i)
to the right of the diagonal should be counted twice in order to account for its “twin”
element arr[j,i] which will not be iterated over. The below code implements this idea:

1 def symmetric_array_mean(arr):
2 """Compute the mean of an n-by-n symmetric array."""
3 total = 0
4 n = len(arr)
5 for i in range(n):
6 total += arr[i, i]
7 for j in range(i+1, n):
8 total += 2 * arr[i, j]
9 return total / n**2

This algorithm involves a nested loop, but one which differs in a significant way from
the nested loop in array_mean: the range of the inner loop depends on the outer loop’s
progress. It is because of this that symmetric_array_mean is able to loop through fewer
elements of the array as compared to array_mean, and is therefore a faster algorithm.
But is symmetric_array_mean significantly faster in the sense that it has a smaller time
complexity than array_mean?

To answer this question, we first observe that each line of the algorithm takes constant
time per execution. Therefore, determining the time complexity of the algorithm as a
whole boils down to counting the number of executions of the line which is executed the
greatest number of times, asymptotically. Intuitively, this will be the body9 of the inner
loop, Line 8.

During different iterations of the outer loop, Line 8 runs a different number of times.
For example, suppose symmetric_array_mean is run on a 4× 4 array. On the first iteration
of the outer loop, i = 0, and so the inner loop iterates over the range range(0+1, 4) =
range(1,4). There are three elements in this range: 1, 2, and 3. Hence Line 8 executes 3
times. However, on the second iteration of the outer loop, i = 1, and so the inner loop
iterates over the range range(1+1, 4) = range(2,4). There are only two elements in
this range, and so Line 8 executes twice. If we continue on in this way, we will see that

9It turns out that Line 8 is not the line which is executed the greatest number of times; this distinction
goes to Line 7. During any given iteration of the outer loop, Line 7 runs one more time than Line 8 in order
to check the loop’s exit condition. As mentioned previously, we can safely ignore this extra iteration when
working with Θ-notation.
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Line 8 executes once on the third iteration of the outer loop, and doesn’t execute at all on
the fourth iteration of the outer loop. In general, during the αth iteration of the outer loop,
Line 8 runs n − α times.

The outer loop iterates n times. Therefore, the total number of executions of Line 8 is
the sum of n − α, for α ranging from 1 to n:

(n − 1)︸ ︷︷ ︸
α=1

+ (n − 2)︸ ︷︷ ︸
α=2

+ . . . + (n − (n − 2))︸ ︷︷ ︸
α=n−2

+ (n − (n − 1))︸ ︷︷ ︸
α=n−1

+ (n − n)︸ ︷︷ ︸
α=n

.

Simplifying:
(n − 1)︸ ︷︷ ︸

α=1

+ (n − 2)︸ ︷︷ ︸
α=2

+ . . . + 2︸︷︷︸
α=n−2

+ 1︸︷︷︸
α=n−1

+ 0︸︷︷︸
α=n

.

That is, the total number of executions of Line 8 is the sum of the first n − 1 natural num-
bers, starting with 1 and ending at n − 1. The sequence (1, 2, 3, . . .) is called an arithmetic
sequence, and the sum of the first n elements, Sn, can be computed via a famous formula:

Sn =
n(n + 1)

2
.

Of course, we want the sum of the first n − 1 elements. Substituting n − 1 in for n, we
find:

Sn−1 =
(n − 1)((n − 1) + 1)

2
=

(n − 1)n
2

,

and so Line 8 executes n(n − 1)/2 times.
The time complexity of the algorithm as a whole is determined by the number of ex-

ecutions of Line 8. Observe that n(n − 1)/2 = Θ(n2). Therefore, the time complexity of
symmetric_array_mean is Θ(n2), which is the same as the time complexity of array_mean!
This isn’t to say that symmetric_array_mean isn’t more efficient than array_mean; in fact,
it is about twice as fast. Therefore, it is important to keep in mind that time complexity
alone does not tell us everything there is to know about an algorithm’s performance.

1.5 Big-Θ and Friends

We have so far used an informal definition of the Θ-notation. We now formalize Θ and
introduce a few related notations that are frequently used to discuss the efficiency of al-
gorithms.

1.5.1 Big-Θ

For the following definition, recall that N+ is the set of all positive natural numbers, i.e.,
N = {1, 2, 3, . . .}.
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Definition 1. Let g(n) be a function. We write Θ(g(n)) to denote the set of all functions
f (n) for which there exist positive real numbers c1, c2 and an n0 ∈ N+ such that for all
natural numbers n ≥ n0,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n).

There is a lot to unpack in this definition. Let’s start with some examples:

Example 1. Suppose I am the gatekeeper of the set Θ(n2), and you come to me with your
favorite function, f (n) = 3n2 + 4n. In order to gain membership into Θ(n2), you will have
to prove that f (n) satisfies the above definition.

To begin, you note that the definition involves both an upper and lower bound. We’ll
start with the lower bound. You point out that for any n ≥ 0, 3n2 + 4n ≥ 3n2. So, letting
c1 = 3, we have that f (n) ≥ c1n2 for any n ≥ 0.

Now you tackle the upper bound. You write down:

3n2 + 4n ≤ c2n2

and say that you will find a positive real number c2 such that the above holds for large
enough n. You start by dividing both sides by n, since we can assume that it is greater
than zero:

3n + 4 ≤ c2n.

Gathering like terms:
(c2 − 3)n ≥ 4.

You point out that if c2 = 4, we have:

(c2 − 3)n = (4 − 3)n = n.

Hence, for any n ≥ 4, it is the case that (c2 − 3)n ≥ 4. This proves that f (n) ≤ 4n2 for all
n ≥ 4.

You have shown that f (n) ≥ 3n2 for all n ≥ 0, and also that f (n) ≤ 4n2 for all n ≥ 4.
Putting these two together, you have proven that:

3n2 ≤ f (n) ≤ 4n2

for all n ≥ 4. This proves that f (n) belongs in Θ(n2).

Example 2. It’s a different day and you have a new favorite function: f (n) = 3n3 − 50n +
42. Let’s prove that it belongs to Θ(n3).

First, we will find a lower bound. When we do this, we can get rid of any part of
f (n) that is clearly positive to simplify our work. For example, f (n) = 3n3 − 50n + 42 ≥
3n3 − 50n for all n ≥ 0. Now we want to find a constant c1 such that 3n3 − 50n ≥ c1n3 for
large enough n. Dividing both sides by n and collecting like terms, we get:

(3 − c1)n2 ≥ 50.
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Our task is to find c1 and n satisfying this. We don’t want c1 to be bigger than 3, because
then the left hand side will be negative for every n ≥ 0, and it is very hard (impossible,
even) to show that a negative number is greater than 50. So take c1 to be your favorite
number between 0 and 3, say, 1. Then the above is satisfied whenever

(3 − 1)n2 ≥ 50,

that is, when 2n2 ≥ 50 or n ≥
√

25 = 5. Hence f (n) ≥ n3 for all n ≥ 5.
Now let’s prove an upper bound. To make things easier, we first realize that f (n) =

3n3 − 50n+ 42 ≤ 3n3 + 42 for all n ≥ 0, since −50n is a non-positive quantity for all n ≥ 0.
Now we wish to find a constant c2 such that

3n3 + 42 ≤ c2n3

whenever n is large. Gathering like terms, we have:

(c2 − 3)n3 ≥ 42.

We can take c2 to be whatever we’d like, as long as the left hand side is positive. Let’s pick
45, since it makes the math easier. Then:

(45 − 3)n3 ≥ 42,

i.e., 42n3 ≥ 42. This is true for every n ≥ 1. Hence f (n) ≤ 42n3 for all n ≥ 1.
Putting the upper and lower bound together, we find that

n3 ≤ f (n) ≤ 42n3

for all n ≥ 42. This shows that f (n) is a member of Θ(n3).

Example 3. Is f (n) = 5n a member of Θ(n2)? It is not: we can prove the upper bound,
but not the lower. To see this, suppose there is a constant c such that 5n ≥ cn2 for large
enough n. Dividing both sides by n, we get 5 ≥ cn for all n large enough. But this cannot
hold for large n, since the right hand side grows to ∞.

Curiously, while Θ(g(n)) is a set of functions, we do not use set notation to denote
that f (n) is a member of Θ(g(n)). That is, instead of writing f (n) ∈ Θ(g(n)), we typically
write f (n) = Θ(g(n)).

1.5.2 Big-O

Writing f (n) = Θ(g(n)) provides upper and lower asymptotic bounds for f (n). How-
ever, in some cases, we may not have (or need) a lower bound. In such cases, we can use
big-O notation:
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Definition 2. Let g(n) be a function. We write O(g(n)) to denote the set of all functions
f (n) for which there exists a positive real number c and a positive natural number n0 such
that for all n ≥ n0,

0 ≤ f (n) ≤ cg(n).

O-notation provides an upper bound, but not a lower bound. Compare this to Θ-
notation, which provides both. As a result, if f (n) = Θ(g(n)), then f (n) = O(g(n)),
too.

Example 4. Let f (n) = 3n2 + 4n. Then f (n) = O(n2). To prove this directly it is sufficient
to use the upper bound from Example 1.

On the other hand, if f (n) = O(g(n)) it isn’t necessarily Θ(g(n)), as the following
counterexample demonstrates.

Example 5. Let f (n) = 5n. Then f (n) = O(n), but it is also true that f (n) = O(n2). In
fact, 5n ≤ 5n2 for all n ≥ 1, which shows that f (n) = O(n2). But, as shown in Example 3,
f (n) is not a member of Θ(n2).

1.5.3 Big-Ω

On the other hand, if we only want to provide a lower bound, we can use Ω-notation:

Definition 3. Let g(n) be a function. We write Ω(g(n)) to denote the set of all functions
f (n) for which there exists a positive real number c and a positive natural number n0 such
that for all n ≥ n0,

0 ≤ cg(n) ≤ f (n).

Example 6. 3n2 + 4n = Ω(n2). To show this we can use the same lower bound as in
Example 1. But, simultaneously, 3n2 + 4n = Ω(n), since 3n2 + 4n ≥ n for all n ≥ 0.

1.5.4 Properties

The Θ-notation has a useful property that helps simplify the time complexity analysis of
algorithms:

Theorem 1. If f1(n) = Θ(g1(n)) and f2(n) = Θ(g2(n)) then f1(n) + f2(n) = Θ(g(n)),
where for every n the function g is defined by g(n) = max(g1(n), g2(n)).

Proof. Since f1(n) = Θ(g1(n)), there exist positive real numbers α1, β1 and a positive
natural number n1 such that α1g1(n) ≤ f1(n) ≤ β1g1(n) for all n ≥ n1. Similarly, there
exist positive real numbers α2, β2 and a positive natural number n2 such that α2g2(n) ≤
f2(n) ≤ β2g2(n) for all n ≥ n2.

We wish to show that f (n) = f1(n)+ f2(n) is Θ(g(n)), where g(n) = max{g1(n), g2(n)}.
For this, we must prove both an upper and a lower bound. We start with the upper bound.
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Using the fact that f1(n) ≤ β1g1(n) for all n ≥ n1 and f2(n) ≤ β2g2(n) for all n ≥ n2, we
have:

f1(n) + f2(n) ≤ β1g1(n) + β2g2(n), for all n ≥ max{n1, n2}

Our goal is to get the right hand side to look like c max{g1(n), g2(n)}, where c is some
constant. A first step is to get it to look like c(g1(n) + g2(n)). To this end, define β =
max{β1, β2}. Now β1 ≤ β and β2 ≤ β, so:

≤ βg1(n) + βg2(n),
= β(g1(n) + g2(n)),

Now, recall that g(n) = max{g1(n), g2(n)}. Hence g1(n) ≤ g(n) and g2(n) ≤ g(n), hence:

≤ β(g(n) + g(n)),
= 2βg(n).

That is, f1(n) + f2(n) ≤ 2βg(n) for all n ≥ max{n1, n2}.
Now we need to prove the lower bound. We have from the fact that f1(n) = Θ(g1(n))

and f2(n) = Θ(g2(n)):

f1(n) + f2(n) ≥ α1g1(n) + α2g2(n), for all n ≥ max{n1, n2}.

Define α = min{α1, α2}. Then:

≥ αg1(n) + αg2(n),
= α(g1(n) + g2(n)).

Can we say that g1(n) + g2(n) ≥ g(n) = max{g1(n), g2(n)}? Indeed we can. Observe
that for any particular value of n, either g1(n) or g2(n) is the max, and we can replace it
by g(n). Suppose (without loss of generality) that g1(n) = g(n) = max{g1(n), g2(n)}.
Then g1(n) + g2(n) = g(n) + g2(n) ≥ g(n). Hence, in general, α(g1(n) + g2(n)) ≥ αg(n)
for all n ≥ max{n1, n2}.

We have shown both lower and upper bounds. That is, for all n ≥ max{n1, n2},

αg(n) ≤ f1(n) + f2(n) ≤ 2βg(n).

Therefore f1(n) + f2(n) = Θ(g(n)).

How does this help us analyze the time complexity of algorithms? Suppose I have
two functions, foo(n) and bar(n). foo(n) takes Θ(n2) time, whereas bar(n) takes Θ(n)
time. A third function, baz(n), simply calls foo and bar in series:
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def baz(n):
foo(n)
bar(n)

The time it takes for baz to run is clearly Tbaz(n) = Tfoo(n) + Tbar(n). Since Tfoo =
Θ(n2) and Tbar = Θ(n), the above theorem tells us that

Tbaz(n) = Θ(max{n2, n}) = Θ(n2).

In this situation, foo is often called the bottleneck of the algorithm, since it dominates the
time complexity. If we could somehow get rid of foo, baz would immediately become a
linear-time algorithm.

Similar results hold for O-notation and Ω-notation:

Theorem 2. Let g(n) = max{ f1(n), f2(n)}. Then:

1. if f1(n) = O(g1(n)) and f2(n) = O(g2(n)), f1(n) + f2(n) = O(g(n));

2. if f1(n) = Ω(g1(n)) and f2(n) = Ω(g2(n)), f1(n) + f2(n) = Ω(g(n)).

The proofs are similar to the last proof above.

1.6 Brute-Force Algorithms

Having so far developed the tools for assessing the correctness and efficiency of algo-
rithms, we now turn to the problem of designing them. There are many algorithm design
paradigms, and we will explore several in the coming chapters. In this section, we will
consider what is arguably the most straightforward strategy: brute-force search. We will
see that while the algorithms resulting from this strategy are typically easy to implement
and obviously correct, they are often so inefficient that they are useless for all but the
smallest and easiest problems.

1.6.1 Search Problems and Optimization

The brute force strategy can be used to design algorithms for solving what are known as
search problems. In this type of problem, the goal is to find an object which satisfies a
certain criterion. The object is assumed to come from a set of possible solutions called
the search space. The search space may be finite or infinite; if it is finite, the brute-force
approach to solving the problem is to systematically check each possible solution until a
valid solutions is found. A textbook example of a brute force search is attempting to break
into a safe by trying all of the possible keypad combinations. Clearly, this might take a
while!
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Algorithm 2 Brute-force optimization algorithm.

def brute_force_minimize(objective_function, search_space):
"""
Minimize an objective function through brute force.

Arguments
---------
objective_function

A callable implementing the function to be minimized.
search_space

A finite iterable which will be searched for the minimizer.

"""
min_value = float('inf') # Python for "∞"
min_theta = None
for theta in search_space:

value = objective_function(theta)
if value < min_value:

min_value = value
min_theta = theta

return min_theta

An optimization problem is a special type of search problem which is often encoun-
tered in data science. In these problems, the goal is to find an element of the search space
which minimizes (or maximizes) an objective function quantifying the quality of a so-
lution. We have seen one optimization problem already: that of minimizing the average
square loss, Lsq. In that problem, the search space was the set of all real numbers, and
Lsq was the objective function. Other examples of optimization problems in data science
include least squares regression (where the search space is the set of all linear functions,
and the objective function is the sum-of-squared-errors) and k-Means clustering (where
the search space is the set of all sets of k cluster centers, and the objective function is the
sum of squared distances to the nearest cluster center).

If an optimization problem’s search space is finite, we may once again use the brute
force strategy to solve it. The first step is to design an algorithm for evaluating the objec-
tive function; what this algorithm looks like depends on the problem at hand. The next
step, however, always looks the same: we evaluate the objective function on each element
of the search space and return the minimizer (or maximizer). The algorithm for minimiz-
ing the objective function is shown in Algorithm 2. This algorithm is straightforward to
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implement and is obviously correct10. But we can also see that the time it takes to com-
plete the search is at least as long as it takes to iterate through the entire search space. More
formally, if there are S elements in the search space, the time complexity of this algorithm
is Ω(S). As we will see, the search space associated with many optimization problems
can quickly become mind-bogglingly large, effectively ruling out brute-force search as an
algorithm.

1.6.2 Wisdom of the Crowd, Revisited

At the beginning of this chapter, we considered the problem of aggregating guesses x1, . . . , xn
into a single, accurate guess, θ∗. Our approach was to find the θ∗ which minimizes the
average square loss, Lsq, defined as follows:

Lsq(θ) =
1
n

n

∑
i=1

ℓsq(xi, θ) =
1
n

n

∑
i=1

(xi − θ)2,

where ℓsq(xi, θ) = (xi − θ)2. A potential pitfall of using the square loss lies in its sensitivity
to outliers. If the data are expected to be noisy11, a better approach might be to minimize
the average absolute loss, Labs(θ), defined as

Labs(θ) =
1
n

n

∑
i=1

ℓabs(xi, θ) =
1
n

n

∑
i=1

|xi − θ|,

where ℓabs(xi, θ) = |xi − θ|. This leads to the following computational problem:

GIVEN: Real numbers x1, . . . , xn.
COMPUTE: A real number θ∗ minimizing the average absolute loss, Labs.

The average absolute loss Labs is not differentiable, and so we cannot solve the problem
using calculus, as was the case with the average square loss. Moreover, this problem’s
search space is the infinite set of all real numbers, and so it seems that brute-force min-
imization cannot be used to solve it. However, we will soon see that Labs achieves its
minimum at one (or more) of the data points. As a result, the search space is reduced
from the infinite set of all real numbers to the finite set of data points.

A good first step in solving an optimization problem is to visualize the objective func-
tion. In this case, the objective function, Labs, is the sum of piecewise linear functions.
More precisely, we have:

Labs(θ) =
1
n

n

∑
i=1

|xi − θ| =
n

∑
i=1

(
1
n
· |xi − θ|

)
.

10Provided that the function implementing the objective function is correct!
11Or you have an enemy in the crowd who intentionally submits a bad guess.
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Figure 1.1: Labs is a continuous, piecewise-linear function whose slope changes only at the
data points.

Defining the piecewise-linear function fi(θ) = 1
n · |xi − θ| for each i ∈ {1, . . . , n}, we see

that Labs(θ) = ∑ fi(θ). The plot of a given fi(θ) makes a ∨-shape, centered around the
data point xi. Because Labs(θ) = f1(θ) + . . . + fn(θ), the plot of the objective function
Labs(θ) can be found by “stacking” the plots of f1, f2, . . . , fn, as is shown in Figure 1.1. The
plot suggests that the following claim is true (its proof is left as an exercise):

Claim 1. Labs is a continuous, piecewise-linear function whose slope changes only at the data
points, x1, . . . , xn. Moreover, Labs attains its minimum.

Note that Labs attaining its minimum value is not implied by its continuity or piecewise-
linearity. For example, the function f (x) = x is both continuous and linear (and therefore
piecewise-linear), but never achieves its minimum value of −∞.

We now wish to prove the following theorem:

Theorem 3. Labs achieves its minimum value at a data point.

Note that the theorem does not say that a minimizer of Labs must be a data point. If the
preceding sentence seems contradictory, consider this: there may be several minimizers
of Labs. We only wish to show that at least one of the minimizers is a data point.

Proof. Our proof strategy is as follows. Let θ′ be a minimizer of Labs; Claim 1 tells us that
such a minimizer exists. There are two cases: either θ′ is a data point, or it is not. If it is
a data point, great! We’re done. If θ′ is not a data point, we will show that the data point
closest to θ′ must be a minimizer12.

12Actually, the closest data points on either side of θ′ will turn out to be minimizers, but we need only one
of them.



36 CHAPTER 1. INTRODUCTION

Assume in what follows that there are at least two data points (if n = 1, Labs is mini-
mized by taking θ = x1). If θ′ is not a data point, then it must lie between two data points;
call these x− and x+, with x− < x+. From Claim 1, the objective function Labs is linear
on the interval (x−, x+). It turns out that the slope of Labs here must be zero: if the slope
were non-zero, we would be able to decrease the value of Labs by moving a little bit to the
left or to the right of θ′. But θ′ is a minimizer, so no smaller value of Labs can exist! Hence
the slope of Labs on (x−, x+) is indeed zero. It follows from this and continuity that Labs is
constant on [x−, x+]. Since a minimizer θ′ ∈ [x−, x+] is inside the interval, every point in
the interval (x− and x+ in particular) is a minimizer.

This proof used a technique called proof by contradiction that you may or may not
have seen before. In a proof by contradiction, we show that a claim is true by assuming
that it is false, and then showing that this leads to an obvious impossibility. The only
way out of this embarrassing situation is to conclude that the assumption itself must be
wrong, and that the claim must be true after all. This technique is very useful when we are
working with objects that are supposedly special in some way (for instance, they claim to
be minimizers or unique).

Proof by contradiction was used above to show that the slope within an interval con-
taining a minimizer which isn’t a data point must be zero. To make the technique clear,
let’s write this part of the proof as a separate claim:

Claim 2. Let θ′ be a minimizer of Labs which is not a data point, and let x− and x+ be the closest
data points such that θ′ ∈ (x−, x+). Then the slope of Labs is zero on the interval (x−, x+).

Proof. Assume for a contradiction that the slope on (x−, x+) is not zero, and is instead
some constant m ̸= 0. If m is positive, then moving slightly to the left of θ′ decreases the
value of Labs, contradicting the fact that θ′ is a minimizer. If m is negative, then moving
slightly to the right of θ′ decreases the value of Labs, again contradicting the fact that θ′ is
a minimizer. In either case, we reach a contradiction. Therefore the slope on the interval
(x−, x+) must be zero.

We now return to solving the computational problem stated at the beginning of this
section. Theorem 3 tells us that Labs is minimized at one of the data points, effectively
reducing the search space from the set of all real numbers to the set of data points. This
is a finite set, and so we can solve this problem with a brute-force search. We begin by
implementing the objective function, Labs:

def average_abs_loss(theta):
total_loss = 0
for x in DATA:

total_loss += abs(x - theta)
return total_loss / len(DATA)
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(a) The geyser eruption data.
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(b) The eruption data clustered into two groups.

Figure 1.2

Here it is has been assumed13 that the data are stored in the module-level variable DATA.
A quick analysis of this algorithm shows that it takes Θ(n) time to compute the value of
the objective function at any point θ, where n is the size of the data set.

We then carry out the brute-force search by calling

brute_force_minimize(average_abs_loss, DATA).

The search calls average_abs_loss once for each data point, for a total of n calls. Each call
takes time Θ(n). As a result, the brute-force search takes quadratic time, overall. While it
turns out that there are faster (linear time) algorithms for solving this problem, a quadratic
time algorithm is still practical for data sets of modest size.

1.6.3 Exponential Time: Clustering

We now turn our attention to the classic data science problem of clustering, in which the
goal is to automatically discover groups (i.e., clusters) in the data. We will see that the
brute-force approach to finding clusters takes time that is exponential in the number of
data points, which is much too slow for most practical applications.

Figure 1.2a depicts data collected from the Old Faithful geyser in Yellowstone National
Park. In particular, the time spent waiting for the geyser to erupt is plotted against the
duration of the ensuing eruption. The plot suggests that the eruptions form two distinct
groups: one group consisting of the eruptions which last longer but also take longer to
form, and the other consisting of those which are short-lived but are quick to form.

13It would probably be a better practice to move DATA to a closure, but we’ll opt for a module-level variable
for now out of simplicity.
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Suppose we wish to recover these groups automatically. The first step in doing so is to
formalize the goal of clustering as a computational problem. There are many approaches
to doing so, and we will adopt a view in which the goal is to separate the data into two
groups which are well-separated. More formally, define a partition of the data set X
to be a pair of sets, B and R, such that each point x ∈ X belongs to exactly one of B
and R. Intuitively, B and R are the clusters. In order to measure how well-separated
the clusters are, we introduce the function δ(B, R) which returns the smallest distance
between a point in B and a point in R; if one of the two sets is empty, we’ll define δ(B, R) =
∞ for convenience. Figure 1.2b shows an intuitively good clustering of the points into a
blue cluster B and a red cluster, R, and the pair of points which determine the separation
of the clusters, δ(B, R).

Of course, there are many different ways to partition the data. Our goal is to find the
partition the data which maximizes the separation, δ(B, R). This leads to the following
computational problem:

GIVEN: Data vectors X = {x1, . . . , xn}.
COMPUTE: A partition (B, R) of the data with maximum separation, δ(B, R).

Note that the search space associated with this problem is the set of all partitions of the
data. Since the data set is finite, the set of all partitions is finite, too. This means that we
may apply the brute-force strategy in order to solve the problem. The resulting algorithm
is simple to implement, and obviously correct.

But recall that the time it takes to execute a brute-force search is at least as long as it
takes to iterate through all of the elements in the search space. How big is the search space
in this problem? That is, how many partitions of n data points are there? For each point,
we must make a decision: does it belong to cluster B or cluster R? Since there are two
choices for each of n points, the total number of possible partitions is

2 · 2 · · · 2 · 2︸ ︷︷ ︸
n

= 2n.

Therefore, the size of the search space is 2n, where n is the number of data points. This
means that the brute-force search has a time complexity of Ω(2n); that is, it takes expo-
nential time.

Exponential time is impractical for all but the smallest problems. To demonstrate this,
suppose that the time it takes for a computer to perform a single basic operation is one
nanosecond14. A brute-force search solving the above problem performs at least 2n oper-
ations, which takes a total of at least 2n nanoseconds. The table below shows how long
this is for various values of n:

14This is a fairly reasonable estimate. It is also a very short amount of time: it takes a photon (the fastest
thing in the universe) one nanosecond to travel 30 centimeters.
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n Time

10 1 microsecond
20 1 millisecond
30 1 second
40 18 minutes
50 13 days
60 36 years
70 37,000 years

As the table shows, the brute-force approach will only be useful for small problem sizes,
as it will take several days to cluster datasets as small as 50 points. In contrast, a quadratic-
time algorithm would be able to cluster 10,000 points in one-tenth of a second. We will
design such a quadratic algorithm for solving this problem in the coming chapters.

In general, computational problems which require us to search over all possible combi-
nations or assignments of points into groups will have exponentially-large search spaces,
making brute-force search impractical. We will see that many of these problems will turn
out to have efficient, polynomial-time algorithms.

1.6.4 Factorial Time: Doctor Orders

We will now consider a problem whose search space grows at a rate that is even faster
than exponential.

Suppose that it is graduation day at the medical school, and you are given the task
of placing the new doctors in line to receive their diplomas. Each graduate is allowed to
make a brief speech, and an adjustable microphone has been placed at center stage for
that purpose. But some graduates are taller, and some are shorter – you are worried that
if you do not line them up in an efficient way, the microphone will have to be constantly
adjusted.

You decide that a good ordering is one in which no speaker has to adjust the micro-
phone very far. To make this precise, you come up with an objective function Ldiff which
returns the greatest difference in height between consecutive speakers. For example, sup-
pose there are four graduates this year; their names and heights are shown in the table
below: If we place them in alphabetical order, as shown in the table, the value of the

Name Height (inches)

Winona 62
Xanthippe 58
Yvonne 71
Zelda 68
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objective function Ldiff is:

max{|58 − 62|, |71 − 58|, |68 − 71|} = max{4, 13, 3} = 13.

On the other hand, the ordering of Xanthippe, Winona, Yvonne, and Zelda results in the
objective function taking the value:

max{|62 − 58|, |71 − 62|, |68 − 71|} = max{4, 9, 3} = 9.

Intuitively, your goal is to find the ordering of speakers in which the biggest difference in
heights is minimized, leading to the following computational problem:

GIVEN: n speakers and their heights.
COMPUTE: An ordering of the speakers which minimizes Ldiff, the biggest ab-
solute difference in height between consecutive speakers.

Since there are finitely-many speakers, there are finitely-many orders in which they
can speak. How many are there, exactly? There are n choices for the first speaker, n − 1
for the second, n − 2 for the third, and so on, for a total of n(n − 1)(n − 2) · · · 3 · 2 · 1 = n!
possible orderings (or permutations). A brute-force search to minimize Ldiff will have a
time complexity of Ω(n!); that is, it will take factorial time.

The factorial function grows much faster than any exponential function. As a result,
a factorial time algorithm is even slower than an exponential time algorithm. To demon-
strate this, assume once more that it takes one nanosecond for a computer to perform a
basic operation. If there are n speakers, it will take a brute-force search at least n! nanosec-
onds to compute the optimal ordering. The table below shows how long this is for various
values of n:

n Time

7 5 microseconds
10 3 milliseconds
15 21 minutes
20 77 years
27 25 times the age of the universe

Twenty-seven is not a lot of graduates – a large medical school could easily graduate 100
new doctors every year. But our algorithm clearly has no chance at working when n is
this large! We need to do something more clever than simply checking all of the possible
orderings.

Recall that the objective function computes the greatest absolute difference in height
between consecutive speakers. Intuitively, we want each speaker to speak between two
people who are of similar height to their own. One way of doing this is to sort the speakers
by height. It turns out that sorting the speakers by height indeed minimizes Ldiff:
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Theorem 4. Sorting the speakers by height minimizes the maximum absolute difference in height
between consecutive speakers.

Proving the theorem will be made easier by using the following claim:

Claim 3. Let a and b be speakers such that no other speaker is between a and b in height. Then
in any ordering of the speakers in which a speaks first and b speaks last, the maximum absolute
difference in height between consecutive speakers is at least the difference in height between a and
b.

Proof. We will prove this claim using a picture. Draw all of the speakers on a number
line according to their height. Any ordering of the speakers can be drawn by making
an arrow between consecutive people, where the length of the arrow is the difference in
height between the people it connects. For example, the ordering (a, y, x, b) is depicted
below:

h
x a b y

The length of an arrow is the difference in height between the speakers. The length of
the longest arrow is the biggest difference in height between consecutive speakers. In
any sequence of arrows which starts at a and ends at b, there must be at least one arrow
which crosses the gap between a and b. Since the width of this gap is the difference in
height between a and b, the length of this crossing arrow (and thus the difference in height
between the speakers it connects) must be larger than the difference in height between a
and b.

We will now prove the theorem. Our approach will be to use proof by contradiction,
which was first introduced in the proof of Theorem 3 on page 35. Before we begin, note
that value of the objective function, Ldiff, is not changed if we reverse an ordering. This
will be useful in this proof. For now, it means that it is safe to assume that by sorted
ordering we mean sorted from shortest to tallest.

Proof of Theorem 4. In what follows, assume that the number of speakers is greater than
two, as otherwise the proof is trivial.

Let ℓ be the maximum absolute difference in height between consecutive speakers in
the sorted ordering. This means that there exists a pair of consecutive speakers – call
them a and b – such that the difference in the height between a and b is ℓ. Since we have
assumed that the graduates are in ascending order by height, we can assume that a is
shorter than b.

Now suppose for a contradiction that there exists an ordering in which the maximum
difference in height between consecutive speakers is smaller than ℓ. Without loss of gen-
erality, we can assume that a occurs before b in this ordering, too, since if this isn’t the
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case, we can simply reverse the ordering – this doesn’t change the value of the objective
function, and we are left with an ordering in which a comes before b.

Note that since a and b are consecutive speakers in the sorted order, there is no other
speaker which is between a and b in height. Therefore, we may apply Claim 3 to conclude
that the maximum absolute difference in height between consecutive speakers in the sub-
ordering which starts with a and ends with b must be at least the difference in height
between a and b, which is ℓ. That is, the maximum absolute difference in height between
speakers in the new ordering is at least as large as it is in the sorted ordering. This con-
tradicts the assumption that the new ordering is better. Hence this ordering cannot exist,
and the sorted order is optimal.
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Sorting is a fundamental operation on data, and so the study of sorting algorithms
naturally fits within the data science curriculum. Nevertheless, the fact remains that very
few data scientists will ever have to implement a sorting algorithm as part of their job.
Most every major programming language and numerical package provides highly opti-
mized implementations of one or more sorting methods. So why do we study sorting, if
not to know how to implement sorting algorithms?

43
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The first reason is that sorting algorithms provide excellent opportunities to practice
our skills in algorithm analysis. Over the next few sections, we will prove the correct-
ness and analyze the time complexity of non-trivial sorting algorithms. We will also see
recursive algorithms for the first time, and learn how to assess their efficiency.

Second, while you may never have to implement a sorting algorithm, you will cer-
tainly have to use them. Different sorting methods have their own advantages and dis-
advantages, and an algorithm which is the best for one use case might not be the best for
another. Understanding how these methods work at a fundamental level will help you
decide which to use, and when.

A third, more substantial reason is that sorting algorithms exhibit a diverse range of
algorithm design strategies. It is true that you may never implement a sorting algorithm
in your day-to-day job, but you will likely implement an algorithm that uses a similar
strategy. You’ll then find your understanding of sorting algorithms useful in applying the
design strategy.

Fourth and finally, many computational problems become easier (or solutions become
more efficient) it it can be assumed that the input is sorted. For instance, finding the
median of a list of numbers can be done in constant time if the list is sorted. We will see
several examples of such problems in this chapter. Moreover, we will get practice with
designing algorithms that take advantage of assumptions in order to work faster1.

2.1 Selection Sort

2.1.1 Intuition

Selection sort is an intuitive sorting algorithm that many people will come up with on
their own if asked to sort a deck of cards or a stack of books. For example, suppose that
the following cards are spread out in a row on the table in front of you:

7 2 1 -3 9

A simple procedure for sorting these cards is to iteratively remove the smallest. Here, −3
is the smallest card. We take this card from the top row and place it at the beginning of a
new row of cards:

7 2 1 9

-3

1Fifth, sorting algorithms are popular subjects in job interviews.
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We then find the smallest remaining card in the top row and move it to the end of the new
row. Here, the smallest remaining card is 1:

7 2 9

-3 1

We proceed like this, at every step selecting the smallest card from the top row and placing
it at the end of the bottom row. The next card to be moved is 2:

7 9

-3 1 2

Then 7:

9

-3 1 2 7

And finally 9:

-3 1 2 7 9

At the end of the procedure – and at any step during – the bottom row of cards is sorted.
This informal description of the algorithm is easy to implement in code. The straight-

forward approach involves creating a new list for storing the sorted output. At each step,
we pop the smallest element from the input list and append it to the output list. While
this implementation is correct, it uses more memory than is necessary.

2.1.2 An In-Place Selection Sort

Instead, we will design a clever implementation of selection sort which modifies the input
list, thereby avoiding the creation of a new list altogether. At any step of the algorithm,
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the input list is divided into two parts. The first part, at the head of the list, contains
the elements that have already been sorted; these are in their final positions. The second
part, consisting of the tail of the list, contains the elements which have yet to be sorted.
Separating these two parts of the list is the barrier. The barrier points to the first element
of the tail of the list, which is also the location where the next selected element will be
placed. At each iteration, the element at the barrier is swapped with the smallest element
in the tail. Once this happens, the element at the barrier is in its final, sorted position, and
so the barrier is moved to the right. The Python code below makes this precise.

def selection_sort(arr):
"""In-place selection sort."""
n = len(arr)
if n <= 1:

return

for barrier_ix in range(n-1):
min_ix = find_minimum(arr, start=barrier_ix)
arr[barrier_ix], arr[min_ix] = arr[min_ix], arr[barrier_ix] # swap

def find_minimum(arr, start):
"""Finds index of minimum. Assumes arr is non-empty."""
n = len(arr)
min_value = arr[start]
min_ix = start
for i in range(start + 1, n):

if arr[i] < min_value:
min_value = arr[i]
min_ix = i

return min_ix

Note that the index of the barrier starts at zero and ends at index n-2, which is not the last
element of the list, but rather the second to last. We will see why this is in just a moment.

The correctness of the above algorithm follows from proving three loop invariants
concerning the for-loop in the main selection_sort function:

Invariant 5. After the αth iteration, each of the first α elements of arr is less than or equal
to each of the last len(arr) − α elements.

Invariant 6. After the αth iteration, the first α elements of arr are in sorted order.

Invariant 7. After the αth iteration, arr is a permutation of its original elements.
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The first invariant is used to prove the second. It might seem like the third invariant
is unnecessary, but consider this: an algorithm which simply overwrites all elements with
zeroes satisfies the first two invariants, but it clearly doesn’t correctly sort the list!

We will prove the first invariant now – the second and third are left as exercises. In
proving these invariants, it is useful to adopt the convention that any universal statement
about an empty list is vacuously true. For example, an empty list is considered to be
sorted2.

Proof of Invariant 1. We start with initialization. We wish to prove the statement: “After
the zeroth iteration (i.e., before the first) each of the first zero elements of arr is less than or
equal to each of the last len(arr) elements. Because arr is an empty list, this is vacuously
true. We have therefore proven initialization.

Next, we prove maintenance. Assume that after the (α − 1)th iteration, each of the
first α − 1 elements of arr are less than or equal to each of the last len(arr) − (α − 1)
elements. We wish to show that after the αth iteration, each of the first α elements is less
than or equal to the remaining len(arr) − α elements.

On the αth iteration, the αth element of arr is swapped with the smallest entry among
the elements in the “tail” of the list, where the tail starts with the αth entry. Let x be
the value of this smallest entry. Because x is a minimum, x is less than or equal to each
element from the αth onwards. Therefore, after the swap, the αth element (which now has
value x) is less than or equal to each element from the αth onwards; namely, it is less than
or equal to each element from the (α + 1)th onwards. From the assumption, each of the
first α − 1 elements is less than or equal to each element from α + 1 onwards. Together,
the previous two sentences say that each of the first α elements are less than or equal to
each of the last len(arr) − α elements. This proves maintenance.

Once we have stated and proved these invariants, we consider the termination of
the loop. As we mentioned above, the loop only iterates len(arr) − 1 times, instead
of len(arr) times as one might expect. Plugging this into each of the loop invariants, we
see that after the loop exits:

1. each of the first len(arr) − 1 elements is less than or equal to the last len(arr) −
(len(arr) − 1) = 1 elements.

2. the first len(arr) − 1 elements are sorted.

3. the array is a permutation of the original values.

The first statement tells us that the last element is the largest in the array; the second
statement tells us that the preceding elements are sorted. Therefore the elements are in

2More exotically, the statement “Every element of arr is made of cheese.” is a true statement, if arr is an
empty list.
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sorted order. Since the elements are the same elements that were given as input, we have
proven that the algorithm is correct.

2.1.3 Time Complexity

We will now find the time complexity of selection sort. We start our analysis with
find_minimum, since it is called in every iteration of the sort. How many times does the
body of the for-loop in find_minimum run? The answer will depend on start, since the
loop index i starts counting at start + 1 and ends at n - 1. To come up with a formula
for how many times the loop runs, a useful trick is to pick a nice value of start and run
through the algorithm in your head. In this case, we might suppose that start is simply
zero; then the loop variable starts at 1 and counts to n - 1, for a total of n − 1 iterations.
Similarly, if start is 1, then then loop starts counting at 2, and the body is therefore exe-
cuted n − 2 times. Picking up on the pattern, we see that, in general, the body is executed
n - start - 1 times.

Now we get back to analyzing selection_sort. The call to find_minimum which oc-
curs in every iteration of selection_sort is just a nested loop in disguise, and we want
to count the number of times the body of the inner loop runs in total. That is, how many
times does the loop body in find_minimum run over the course of the sort? On the first
iteration of the sort, barrier_ix is zero. Hence, from the above, the body of the loop
in find_minimum runs n − 1 times. On the second iteration, when barrier_ix is 1, it
runs n − 2 times. In general, for any particular value of barrier_ix, the body of the
loop in find_minimum runs n - barrier_ix - 1 times. In particular, on the last iteration,
barrier_ix is n − 2, and the body of find_minimum runs n − (n − 2)− 1 = 1 time. There-
fore, the body of the loop in find_minimum runs one fewer time for every iteration of the
loop in selection_sort, starting with n − 1 times and ending at 1 time. Hence the total
number of runs is:

(n − 1) + (n − 2) + . . . + 3 + 2 + 1.

This is the sum of the first n− 1 natural numbers Recall (from the first homework) that the
sum of the first n natural numbers is n(n + 1)/2. Here we have the first n − 1 numbers,
and so we replace n by n − 1 to obtain: (n − 1)n/2 for the total number of times that the
loop body in find_minimum runs over the course of selection sort. Since n(n − 1)/2 =
Θ(n2), we say that the sort runs in quadratic time.

2.2 Digression on Recursion

The next sorting algorithm we will consider, merge sort, is not quite as intuitive as se-
lection sort. Nevertheless, it is a classically-elegant algorithm and it is much faster than
selection sort, to boot.
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Merge sort is a recursive algorithm, meaning that it references itself. Recursive algo-
rithms can be a little mind-bending at first, so we will take the opportunity to study a
simple recursive algorithm before tackling merge sort.

2.2.1 Recursive Algorithm Design

Consider the problem of computing n-factorial. First recall that

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1.

Conventionally, we assume that 0! = 1. Now, if we group the last n − 1 terms, we will
recognize the grouped quantity as (n − 1)!:

= n · [(n − 1) · (n − 2) · · · 3 · 2 · 1]︸ ︷︷ ︸
(n−1)!

= n · (n − 1)!

So if we know what (n − 1)! is, we can compute n! by simply multiplying by n. For
example, if we somehow know that 4! is 24, then we can compute 5! by calculating
5 × 4! = 5 × 24 = 120.

Using this insight, we will now write a Python function, factorial, which takes one
argument, n, and which computes n! by means of a recursive algorithm. When design-
ing a recursive function such as this, we take a leap of faith. Here, we will assume while
writing the body of factorial that calling factorial(n-1) (magically) results in the cor-
rect value. Under this assumption, n! is computed by carrying out n * factorial(n-1),
leading to the following code:

def factorial(n):
"""First attempt at recursive algorithm for computing n!"""
return n * factorial(n-1)

If this seems too easy, you’re right: the above code is incorrect, and will in fact never termi-
nate. To see why, try running the function in your head with an input of n = 3. On the first
call of the function, the computer tries to multiply 3 with the result of factorial(3-1).
This results in a second call to the function: factorial(2), during which the computer
tries to multiply 2 with the result of factorial(2-1). This results in a third call to the
function: factorial(1). During this call, the computer makes a fourth call to the func-
tion: factorial(0). During the fourth call, the computer makes a fifth: factorial(-1).
And so on. The algorithm will recurse forever, or at least until the computer runs out of
memory3.

3Or until you hit Python’s recursion limit. Python is not optimized for recursion, and therefore
only allows you to make several thousand recursive calls; you can see exactly how many by running
import sys; sys.getrecursionlimit().
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The way out of this situation is simple: we modify factorial so that, when n is small
enough, it doesn’t recurse: it calculates and returns the answer outright. Here, we know
that 0! is one by convention, so we add a check to the beginning of the function which
returns 1 if the argument is zero:

1 def factorial(n):
2 """Computes n!, recursively. Assumes n is non-negative integer."""
3 if n == 0:
4 return 1
5 return n * factorial(n-1)

An input for which the answer is computed without recursing is known as a base case.
You can check that, for any integer value of n ≥ 1, factorial(n) will only recurse until it
hits the base case, and will therefore terminate in a finite amount of time. In fact, we will
soon see how to assess the time complexity of a recursive algorithm such as this.

In the coming sections, we will design several more recursive algorithms. When we
do so, we will keep in mind the two steps we performed above: First, we took a leap of
faith in assuming that the function being written already works for smaller inputs, and
second, we found a base case for which the algorithm can compute the answer directly.

2.2.2 Correctness

The leap of faith we took when designing the above recursive algorithm may have left you
feeling uncertain about its correctness. We will now restore your confidence by proving
that the above factorial algorithm works. To be precise, we wish to prove the following
claim:

Theorem 5. factorial(n) correctly computes n! for all non-negative, integer inputs.

Verifying the correctness of algorithms has so far been synonymous with proving loop
invariants, but the recursive algorithm above has no loops to analyze. We will take a
different, but related, approach instead.

First note that proving the correctness of factorial(0) is easy: In this case, the al-
gorithm simply returns one without recursing, and 0! is indeed one. This proves the
correctness of the algorithm in the base case – the challenge now is to prove the claim for
the infinitely-many possible inputs which remain.

Now consider the case when n = 1. In this situation, the algorithm computes and
returns 1 * factorial(1 - 1), resulting in a call to factorial(0). This is will produce
the correct value, provided that factorial(0) is correct. But we have just shown that
factorial(0) is correct! So factorial(1) is correct, too.

Next, consider the case then the input n = 2. By similar logic, factorial(2)
will be correct, as long as factorial(1) is correct. But we have just shown this! So
factorial(2) is indeed correct. We could proceed like this indefinitely, showing that
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each of factorial(3), factorial(4), factorial(5), and so on are correct. Instead, we
will write one generic argument that works for all positive integers n ≥ 1.

Proof by Induction

Note that in proving the correctness of factorial(1) above, we used the fact that
factorial(0) is correct. Likewise, we used the fact that factorial(1) is correct in or-
der to prove the correctness of factorial(2). In an argument that works for general
non-negative, integer n ≥ 1, we would show that, if factorial(n-1) is correct, then
factorial(n) is correct; this is known as proving the inductive step.

Together, proving the base case and the inductive step are sufficient to prove Theo-
rem 5. The base case shows that the algorithm is correct when given zero as input. We can
then apply the inductive step with n = 1 to show that factorial(1) is correct. Applying
the inductive step once more proves that factorial(3) is correct. Indeed, we can repeat-
edly apply the proof of the inductive step to show that factorial(n) is correct for any
non-negative, integer value of n. A proof of this form is known as a proof by induction.
We now give such a proof of Theorem 5:

Proof of Theorem 5. We will prove the theorem by induction.
BASE CASE (n = 0): When n is zero, the function simply returns one, which is indeed

0-factorial. So factorial(0) is correct.
INDUCTIVE STEP: Let n ≥ 1 be an integer such that factorial(n-1) is cor-

rect. We will show that factorial(n) is correct. The call to factorial(n) returns
n * factorial(n-1). Note that factorial(n-1) = (n − 1)!. Therefore, factorial(n)
returns ncdot(n − 1)! = n!, and so factorial(n) is correct.

The inductive step should look familiar – it is very similar to the maintenance step of
a loop invariant proof. Similarly, the base case is analogous to initialization. In fact, the
proofs of loop invariants we have so far seen are special cases of inductive proofs.

2.2.3 Time Complexity

What is the time complexity of factorial? So far, we have only assessed the efficiency
of iterative algorithms. We will need to develop a new approach to analyze recursive
routines.

To be precise, let T(n) be the time taken by factorial(n). As of now, we do not know
what T(n) is in general, and our goal is to bound it asymptotically. We begin by observing
that T(0), the time taken by factorial(0), is some (unknown) constant, c0. Therefore, we
may write:

T(0) = c0,

Now consider what happens when factorial(n) is called, where n ≥ 1 is an arbitrary
integer. We can compute the time this call takes, T(n), by adding up the time taken by each
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line of code in the function body. To start, the function will take some constant amount
of time d1 to check whether n is zero. It will then spend some unknown amount of time
T(n − 1) in the call to factorial(n-1). Lastly, it will spend some constant amount of
time d2 multiplying the result of the recursive call with n and returning the result. Hence
the total time taken is:

T(n) = d1 + T(n − 1) + d2

= T(n − 1) + c,

where c = d1 + d2. Note that the T on the right hand side is the same as the T on the left
hand side; that is, we have a recursive formula for T(n). In words, the above says that
the time it takes to run factorial(n) is equal to the time it takes to run factorial(n-1),
plus a constant.

Recurrence Relations

We have found that the time it takes for factorial(n) to run is given by the following
formula:

T(n) =

{
c0, n = 0
T(n − 1) + c, n ≥ 1

A recursive formula such as this is known as a recurrence relation. The base case of the
recurrence is the input for which T(n) can be computed directly, without recursing – here,
the base case is when n = 0.

The above recurrence tells us how to compute T(n) for any integer n ≥ 0. For instance,
to compute T(1), we calculate:

T(1) = T(1 − 1) + c = T(0) + c = c0 + c.

Likewise, to compute T(2), we have:

T(2) = T(2 − 1) + c
= T(1) + c

We have just seen that T(1) = c0 + c. Making this substitution, we find:

= (c0 + c) + c
= 2c + c0

In principle, we could follow this procedure to calculate T(100), T(1, 000), or even
T(1, 000, 000), but doing so would be somewhat time consuming. Moreover, it is still
unclear how fast T(n) grows – is it Θ(n), Θ(n2), or something else altogether? What we
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would like is a formula for T(n) which isn’t recursive, and instead allows us to compute
T(n) directly. Finding a non-recursive formula for T(n) is called solving the recurrence.
There are several approaches for solving recurrences; we will take a look at one of them
now.

Solving Recurrences by Unrolling Them

Consider again the recurrence:

T(n) =

{
c0, n = 0
T(n − 1) + c, n ≥ 1

. (2.1)

Our goal is to get rid of the T(n − 1) on the right hand side of the equation. If we replace
n by n − 1 in Equation 2.1, we arrive at a formula for T(n − 1):

T(n − 1) = T((n − 1)− 1) + c = T(n − 2) + c.

Using this expression for T(n − 1), we can rewrite the formula for T(n):

T(n) = T(n − 1) + c
= [T(n − 2) + c] + c
= T(n − 2) + 2c

We say that we have unrolled the recurrence. What have we gained by doing so? We still
have a T on both sides of the equation, but notice that the argument of the T on the right
hand side is smaller than it was before. What happens if we unroll for a second time?
Observe:

T(n − 2) = T((n − 2)− 1) + c = T(n − 3) + c

so:

T(n) = T(n − 2) + 2c
= [T(n − 3) + c] + 2c
= T(n − 3) + 3c

After each unrolling, the argument of T on the right hand side decreases. If we unroll
sufficiently many times, eventually the argument will be zero. We can stop unrolling at
that point, because we know that T(0) = c0. We will have by then replaced all instances
of T on the right hand side, obtaining a formula which allows us to compute T(n) directly
and thereby solving the recurrence.

More precisely, we can solve a recurrence by following the below procedure:
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1. Unroll the recurrence until a pattern emerges. We have already done this above. Let’s
agree to call the “first step” of unrolling the point in time before we have unrolled
the recurrence. Then at the first step we have the original recurrence: T(n) = T(n −
1) + c. The “second step” of unrolling is then the point in time after unrolling once.
At the second step we found: T(n) = T(n− 2)+ 2c. At the third step (after unrolling
twice), we had: T(n) = T(n − 3) + 3c. We could continue, but by now a pattern has
emerged. Placing these results into a table can make it easier to identify the pattern:

Step Formula

1 T(n − 1) + c
2 T(n − 2) + 2c
3 T(n − 3) + 3c

2. Find a general formula for T(n) in the kth step of unrolling. The table above makes it
clear that on the kth step of unrolling we will obtain the formula T(n) = T(n − k) +
k · c. You can check your general formula by plugging in a particular value of k and
verifying that the result matches what you have in the table above. For instance,
taking k = 3 yields T(n) = T(n − 3) + 3c, which is indeed what is in the table.

3. Calculate the step number in which the base case is reached. The argument to T decreases
with each step until it eventually reaches zero, which is the base case of this recur-
rence. On what step does it reach zero, exactly? On the kth step, the argument is
n − k. We therefore solve n − k = 0 for k, resulting in k = n. Hence the base case is
reached on the nth step

4. Replace k with this step number in the general formula for T(n). We found above that, on
the kth step, T(n) = T(n − k) + k · c. Replacing k by n (the number of steps needed
to reach the base case) we arrive at a new formula:

T(n) = T(n − n) + n · c
= T(0) + n · c

We know from Equation 2.1 that T(0) = c0. So:

= c0 + n · c

At this point, we’ve removed all T’s from the right hand side of the equation. We have
therefore solved the recurrence: its solution is T(n) = c0 + n · c. You can verify that this
formula will produce the same result as using Equation 2.1 to recursively calculate T(n),
for all integer values of n ≥ 0.

Therefore, the time it takes factorial to run on an input of size n is T(n) = c0 + c · n =
Θ(n). That is, it takes linear time.
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2.3 Merge Sort

We will now look at an elegant and efficient sorting algorithm called merge sort. Merge
sort is a textbook example of a divide and conquer algorithm. In a divide and conquer
approach, the problem is divided into smaller and smaller problems until they are small
enough to solve easily (i.e., conquer); these solutions are then recombined to solve the
original problem. Divide and conquer algorithms are often simple in the sense that they
do not take up a lot of lines of code, but it can be difficult to see why they work at first
glance.

Merge sort implements the divide and conquer strategy in the following way: First,
it splits the input array into two smaller arrays which each have (roughly) half of the
original elements. It then sorts these smaller arrays independently. Finally, these smaller,
sorted arrays are merged into one large, sorted array.

2.3.1 Designing mergesort

We will implement merge sort as a recursive Python function, mergesort, which modi-
fies the array itself instead of returning a sorted copy. Since our implementation will be
recursive, we should think about the base case; i.e., an input for which the algorithm can
return the correct answer without recursing. A natural base case in sorting is when the
input array is of size one or less, as then the array is already sorted, and nothing needs to
be done! Therefore, our function will immediately check the length of the array – if is is
bigger than one, it will perform the work of sorting, otherwise it will simply return.

The high-level flow of the function is documented with comments in the code below:

def mergesort(arr):
if len(arr) > 1:

# split the array in half
# TODO
# sort the left half
# TODO
# sort the right half
# TODO
# merge the left and right halves
# TODO

We will now fill in each part of the function in turn.

Splitting the Array in Half

Merge sort begins by splitting the array into two pieces, each of which will be sorted
independently. We can split an array into two pieces in Python using the slicing syntax –
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see the box below for a refresher. For instance, if middle is a variable storing the index of
the middle of arr, then splitting the array is done by writing:

left = arr[:middle]
right = arr[middle:]

It should be noted that slicing an array produces a copy4, so that modifying left or right
will not change arr.

4A shallow copy, to be precise.
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Array Slicing. If arr is a list (or NumPy array), the part of the list starting
at index start and ending right before index stop can be obtained by writing
arr[start:stop]; this feature is known as slicing. Note that arr[stop] is not in-
cluded in the result! This, along with the fact that Python starts counting from zero,
can take some getting used to – but it has its advantages. For example, to take the
first three elements from an array, one can write:

>>> x = ['a', 'b', 'c', 'd', 'e']
>>> x[0:3]
['a', 'b', 'c']

In fact, the zero can be omitted. The below does the same as the above:

>>> x[:3]
['a', 'b', 'c']

To select everything from the third index to the end, we can write:

>>> x[3:len(x)]
['d', 'e']

But similarly, omitting the end of the slice defaults to selecting all elements up until
the end of the array:

>>> x[3:]
['d', 'e']

Of course, we don’t always have to start our selection at the beginning, nor do we
have to end at the last element. We can select, for instance, the second, third, and
fourth elements with a slice, too:

>>> x[1:4]
['b', 'c', 'd']

Observe that in each of these cases, whenever we write x[start:stop] the output is
an array of size stop - start. This will be useful to keep in mind.
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All that is left to do is to compute the index of the middle element of the array. In-
tuitively, the middle element is halfway through the array, and so the index should be
approximately len(arr)/2. Of course, if arr has an odd number of elements, this will
not be a whole number and thus not a valid index. In this case, we need to round – the
question is, do we round up or down? To help decide, suppose arr has three elements,
like below:

[0, 1, 2]

Here, n/2 = 3/2 = 1.5. If we set middle by rounding down to one, we split the array into
[0] and [1,2]. On the other hand, if we split the array by rounding 1.5 up to two, we
split the array into [0,1] and [2]. It turns out that either approach will work – we’ll just
pick one and stick with it to be consistent. So, in what follows, we will round down.

Rounding down in this way is called taking the floor of the number. More precisely,
the floor of a real number x is the largest integer which is less than or equal to x. For
example, the floor of 1.5 is 1; the floor of -2.3 is -3; and the floor of 4 is simply 4. In math-
ematical notation, we write ⌊x⌋ to denote the floor of x. Python provides the math.floor
function for computing the floor5. As you might have guessed, the smallest integer greater
than or equal to x is called the ceiling of x, and is denoted by ⌈x⌉.

We have therefore filled in the first part of the mergesort function:

import math

def mergesort(arr):
if len(arr) > 1:

# split the array in half
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]

# sort the left half
# TODO
# sort the right half
# TODO
# merge the left and right halves
# TODO

5Python also provides a “flooring division” operation, //, which takes the floor after dividing. That is,
len(arr) // 2 will produce the same result as math.floor(len(arr) / 2). We will use math.floor be-
cause it is more explicit.
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Sorting the Halves

After splitting the array into two halves, merge sort next sorts each. In principle, we could
do this using any sorting method, such as selection sort. While the resulting algorithm
would work, it turns out that it would be no faster than just using selection sort to sort the
whole list. Instead, merge sort takes a leap of faith and uses merge sort to sort each half:

import math

def mergesort(arr):
if len(arr) > 1:

# split the array in half
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]

# sort the left half
mergesort(left)
# sort the right half
mergesort(right)

# merge the left and right halves
# TODO

Note that mergesort(left) and mergesort(right) do not return new arrays – they mod-
ify left and right.

Merging the Sorted Halves

Our function mergesort recursively sorts each half of the input array arr by modifying
left and right. Assuming for the moment that these recursive calls work as expected
(i.e., assuming that left and right are sorted), there remains the work of combining
left and right into a larger sorted array, which we will return by modifying arr. This is
the job of the merge function, which we will now design.

Consider the problem of combining two sorted stacks of cards into one sorted stack.
At any moment, you can only see the top of each stack. To merge these two stacks into
one, you repeatedly take the smallest card off of either stack. You will eventually remove
all of the cards from one of the stacks, but that’s fine: you just continue drawing cards
from the remaining stack until it, too, is depleted. Convince yourself that this procedure
correctly merges two sorted stacks of cards into one sorted stack.

Our merge function will operate in the same way – the Python implementation is
shown below. Several aspects are worth of explanation. First, the function’s arguments
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are the arrays to merge, left and right, but also arr; this is because we will store the
result in arr. Second, our function appends float('inf') to the end of left and right6.
This special value is known as a sentinel, and the reason for adding it will be clear in
a moment. In short, its purpose is to make the algorithm cleaner and simpler7 Lastly,
we will keep track of the “front” of the left and right arrays with variables left_ix and
right_ix; both initialized to zero.

def merge(left, right, arr):
left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0
for ix in range(len(arr)):

if left[left_ix] < right[right_ix]:
arr[ix] = left[left_ix]
left_ix += 1

else:
arr[ix] = right[right_ix]
right_ix += 1

The core of the function is a loop ranging from 0 up to (and excluding) len(arr). We
can think of the loop variable, ix, as being the index of the element of arr whose value is
currently being decided. At every iteration, the numbers at the “front” of left and right
– that is, left[left_ix] and right[right_ix] – are compared. The smaller of the two is
placed into arr at the index ix, and the “front” of the corresponding array is moved one
element to the right by incrementing left_ix or right_ix as necessary. At the end of the
αth iteration, the first α elements of arr will be in their final sorted order. Since the loop
performs len(arr) iterations, arr will be sorted after the loop is finished.

The purpose of the float('inf') at the end of each half is to simplify the algo-
rithm’s handling of the situation where one “stack of cards” becomes empty. When this
occurs in the above implementation, the “front” number on the “empty” array will be
float('inf'). When the “front” of each array is compared, the other array will always
win, since float('inf') is larger than any number. The other array will continue win-
ning until it, too, is depleted. But we don’t need to check that both arrays have been
emptied; we know that we need to merge precisely len(arr) elements, and so we are
done once we’ve made that many iterations.

6Recall that float('inf') is how ∞ is written in Python
7Appending to a Python list is (roughly-speaking) a constant-time operation, while appending to a

NumPy array is a linear-time operation. We’ll assume here that the input is a Python list (NumPy arrays
don’t have an append method, anyways). It should be stated that we can implement the merge function
without appending an ∞; the code just becomes uglier.
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Algorithm 3 Merge sort.

import math

def mergesort(arr):
"""Sorts array using merge sort."""
if len(arr) > 1:

# split the array in half
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]

# sort the left half
mergesort(left)
# sort the right half
mergesort(right)

# merge the left and right halves
merge(left, right, arr)

def merge(left, right, arr):
left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0
for ix in range(len(arr)):

if left[left_ix] < right[right_ix]:
arr[ix] = left[left_ix]
left_ix += 1

else:
arr[ix] = right[right_ix]
right_ix += 1

Merging the left and right halves completes the algorithm. The full code is shown in
Algorithm 3.
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2.3.2 Understanding Merge Sort

Merge sort can seem like magic at first glance, and it isn’t easy to see where the sorting
actually occurs. We will prove that mergesort is correct in a moment, but first we will try
to gain some intuition for how the algorithm works.

The Sorting Happens in merge

It is interesting to note that no actual sorting occurs in the main mergesort function. In-
stead, the sorting occurs in the merge subroutine.

To see this, consider what happens when we execute mergesort([5, 2]). The
function splits this array into left = [5] and right = [2] and makes recursive
calls to mergesort([5]) and mergesort([2]). These recursive calls exit without
doing anything, since their inputs are arrays of size one. Hence mergesort calls
merge([5], [2], [5, 2]).

The merge function is given two “stacks of cards”, each with one element. It will take
the smaller of the two cards and place it into the first slot in arr, then it will place the other
card into the second slot – this is where the elements are sorted! Before calling merge, arr
is [5, 2]. After calling merge, arr is [2, 5], and in sorted order.

Tracing a Merge Sort

Figure 2.1 depicts a merge sort on the array [7, 3, 1, 6, 2, 5, 8, 4]. The figure
shows that the input array is recursively halved until arrays of size one are obtained.
These are then merged to form sorted arrays of size two, which are in turn merged to
form sorted arrays of size four, and so on.

While helpful, such a depiction does not fully capture the order in which the vari-
ous calls to mergesort and merge are made. A helpful exercise is to imagine “bugging”
mergesort and merge by placing print statements on the first and last lines of each8:

def mergesort(arr):
args = arr.copy()
print(f'Starting mergesort{args}...')
...
print(f'Finishing mergesort{args}...')

def merge(left, right, arr):
args = (left.copy(), right.copy(), arr.copy())
print(f'Starting merge{args}...')

8We copy the arguments because we will later want to print them as they were when the function was
called, but their values will change over the course of the function.
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7 3 1 6 2 5 8 4

7 3 1 6 2 5 8 4

7 3 1 6 2 5 8 4

7 3 1 6 2 5 8 4

3 7 1 6 2 5 4 8

1 3 6 7 2 4 5 8

1 2 3 4 5 6 7 8

Figure 2.1: Merge sort operating on an array.

...
print(f'Finishing merge{args}...')

For instance, when mergesort is called on the list above, the first few lines of output will
be:

Starting mergesort([7, 3, 1, 6, 2, 5, 8, 4],)
Starting mergesort([7, 3, 1, 6],)
Starting mergesort([7, 3],)
Starting mergesort([7],)
Finishing mergesort([7],)
Starting mergesort([3],)
Finishing mergesort([3],)
Starting merge([7], [3], [7, 3])
Finishing merge([7], [3], [7, 3])
...

Note that there are many calls to mergesort before even the first call to merge! Tracing out
the rest of the function’s execution is left as an exercise.

2.3.3 Correctness

Merge sort takes a leap of faith whenever it recursively calls itself to sort each half of the
original array. We now prove that this leap is warranted, and that merge sort indeed sorts
correctly. More precisely, we will prove the following claim:
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Theorem 6. mergesort correctly sorts arrays of size n, for any n ≥ 0.

As with proving the correctness of our factorial function before, we will use the
method of proof by induction. Recall that a proof by induction has two parts: the base
case and the inductive step. Here, there are actually two bases cases: when the size of the
input array is zero, and when it is one. In the inductive step, we show that if mergesort
functions correctly on inputs of size less than k, it will work on inputs of size k.

Proof of Theorem 6. BASE CASE(S): n = 0 AND n = 1. An empty array and an array with
one element are both considered to be trivially sorted. When n = 0 and when n = 1,
mergesort simply returns without modifying the array. Hence in both cases, the algo-
rithm is correct.

INDUCTIVE STEP: Let k ≥ 2 be such that mergesort correctly sorts all arrays whose
size is strictly less than k. We will show that mergesort correctly sorts an arbitrary array
arr of size k. When mergesort(arr) is called on an array of size k ≥ 2, the algorithm will
make two recursive calls: one to mergesort(left) and another to mergesort(right).
The size of left is less than k, as is the size of right9. Hence, by assumption, left and
right are correctly sorted by the recursive calls. Assuming that merge correctly merges
two sorted arrays, arr will contain the elements it started with, but in sorted order. Hence
the algorithm is correct.

2.3.4 Time Complexity

Merge sort is undoubtedly more clever than selection sort. This cleverness makes it harder
to understand, but it also results in a huge performance boost. In fact, it turns out that
merge sort achieves the best time complexity possible for sorting10!

Writing the Recurrence Relation

We will find the time complexity of mergesort in the same way that we analyzed
factorial: by writing down and solving a recurrence relation. To begin, let T(n) de-
note the time it takes for mergesort to run on an input of size n. We already know what
T(n) is when n = 0 or n = 1; in these cases, mergesort simply returns without recursing,
and hence takes constant time. Therefore T(0) = T(1) = Θ(1).

On the other hand, a call to mergesort with an array of size two or larger spends
its time in three different ways. First, it calculates the middle of the array and splits it

9A more careful argument would actually prove that this is true! Here, we will take it for granted.
10More specifically, it achieves the best time complexity possible for algorithms which sort by comparing

elements to see which is smaller. Comparing elements is not always needed to sort. For instance, if is known
that the input are the first ten natural numbers in shuffled order, we can immediately put each number in its
correct position without comparing it to the others.
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into two pieces. Splitting an array by slicing produces new arrays, and each of the n
values must be copied from arr to either left or right, which takes Θ(n) time. Next,
mergesort calls itself recursively on arrays which are roughly half the size. For simplicity,
let’s assume from here on that n is a perfect power of 2. Then each recursive call operates
on an array of size n/2. Therefore, each of these recursive calls takes time T(n/2), for a
total time of 2 · T(n/2). Lastly, we merge the two sorted sub-arrays; a quick analysis of
the merge algorithm shows that this takes time Θ(n). Altogether, the time spent in one
call to mergesort when n ≥ 2 is

T(n) = Θ(n) + 2T(n/2) + Θ(n).

Since Θ(n) + Θ(n) is just Θ(n) once again, we can simplify a little:

T(n) = 2T(n/2) + Θ(n).

In total, we have:

T(n) =

{
Θ(1), n ∈ {0, 1},
2 · T(n/2) + Θ(n), n ≥ 2.

This is a recurrence relation, and we would like to “solve” it; that is, find a nice, closed
form expression for T(n) which doesn’t refer to itself.

In the above, we have used the Θ-notation in a new way. When we write T(n) =
2T(n/2) + Θ(n), what we mean precisely is that there is an unknown function f (n)
such that f (n) = Θ(n) and the equality T(n) = 2T(n/2) + f (n) holds for all n.

Solving the Recurrence Relation

Before we solve the above recurrence, we will perform one small modification that will
make our lives easier. It turns out that we can replace the Θ(n) with n without changing
the solution’s asymptotic bounds; likewise, we can replace Θ(1) with 1. That is, if we are
only interested in writing T(n) = Θ(·), then we may instead solve the simpler recurrence:

T(n) =

{
1, n ∈ {0, 1},
2 · T(n/2) + n, n ≥ 2.

We will solve this recurrence relation by “unrolling” it, as we did when we solved the
recurrence for factorial on page 53. Recall that the first step of the procedure is to unroll
the recurrence until a pattern emerges. To start, we have:

T(n) = 2 · T(n/2) + n
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Let’s call this step #1 of our unrolling procedure. Now, if we plug in n/2 for every n, we
obtain T(n/2) = 2 · T(n/4) + n/2. Let’s make that substitution for T(n/2) in the above:

= 2 [2 · T(n/4) + n/2] + n,
= 4 · T(n/4) + n + n,
= 4 · T(n/4) + 2n.

That was step #2 of the procedure. Now we want to expand T(n/4). Plugging in n/4 for
every n in our original recurrence relation, we get T(n/4) = 2 · T(n/8) + n/4. Making
this substitution, we find that, after iteration k = 3:

= 4 [2 · T(n/8) + n/4] + 2n,
= 8 · T(n/8) + 3n.

After the k = 4 iteration, we’ll get:

= 16 · T(n/16) + 4n.

Let’s place these results into a table so that finding a pattern is easier:

Step Formula

1 T(n) = 2 · T(n/2) + n
2 T(n) = 4 · T(n/4) + 2n
3 T(n) = 8 · T(n/8) + 3n
4 T(n) = 16 · T(n/16) + 4n

It seems that the coefficients on T and in the arguments to the functions are powers of
two. In fact, a little thought shows that on the kth iteration of the procedure, we’ll arrive
at:

= 2k · T(n/2k) + kn.

The next step of solving the recurrence is to find how many steps it takes to reach the
base case. In this problem, the base case is when n = 1. Hence we want to find the step
number k such that n/2k = 1. Multiplying both sides by 2k, we find that 2k = n. Taking
log2 of both sides results in k = log2 n. That is, after log2 n steps, we will find T(1) on the
right hand side of our formula for T(n).

Lastly, we substitute this step number into our general formula. Replacing k with
log2 n, we find:

T(n) = 2log2 n · T(n/2log2 n) + n log2 n
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Recall that 2log2 n is simply n. Hence:

= n · T(n/n) + n log2 n,
= n · T(1) + n log2 n.

Since T(1) = 1, we end up with:

= n + n log2 n,
= Θ(n log2 n).

This solves the recurrence, and the time complexity of merge sort is Θ(n log2 n).

Note that log2 n differs from ln n by a constant factor. In fact, if b is any valid log-
arithm base, log2 n = (logb n)/(logb 2). Since Θ “ignores” constant factors, we
could just as well have written T(n) = Θ(n ln n), T(n) = Θ(n log10 n), or even
T(n) = Θ(n logπ n). That is, the choice of base is arbitrary when using asymptotic
notation. Because of this, we typically write T(n) = Θ(n log n) without specifying a
base.

Comparison to selection sort. We have seen that the time complexity of merge sort is
Θ(n log n). Compare this to the time complexity of selection sort, which is Θ(n2). Is that
a big improvement? Absolutely! Suppose it takes selection sort n2 nanoseconds to sort
a list, while it takes merge sort n log2 n nanoseconds. To sort a list of 1 million elements,
selection sort requires (1 million)2 nanoseconds, or 16 and 2/3 minutes. Merge sort, how-
ever, requires only about 20 milliseconds. This is because log2 grows very slowly: in fact,
log2(1 million) ≈ 20.

2.4 The Value of Sorted Data

Sorting is an important data science operation in its own right, but it turns out that many
other apparently unrelated computational problems become easier to solve if the input
is already sorted. We will see several of such problems in this section. We will use this
opportunity to practice designing non-trivial algorithms which exploit the special struc-
ture of a problem in order to achieve impressive speedups – these types of problems are
commonly posed in software engineering and data science interviews.

2.4.1 Searching

Suppose we are given a table with n rows, each of them containing information about a
different movie. We wish to find the index of the row corresponding to the classic Amer-
ican comedy, “The Wicker Man”. The straightforward approach to finding this index is
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to loop over the table’s rows and check, one-by-one, if each contains the desired movie.
When we find the desired row, we stop and return its index.

The algorithm we have just described is called linear search. The below Python code
implements the algorithm in the more general setting in which we wish to find the index
of an object (called target) in a list (called things). If the object is not in the list, the
function returns None.

def linear_search(things, target):
for ix, thing in enumerate(things): # see below

if thing == target:
return ix

return None

Python’s enumerate. Python’s usual for-loop just produces the elements in a con-
tainer, such as a list. But what if we want not only the elements, but their indices,
too? That is where enumerate comes in. An example should help make its behavior
clear. Let things = ['a', 'b', 'c']. Then the output of:

for ix, thing in enumerate(things):
print(ix, thing)

will be: 0 'a', then: 1 'b', and finally: 2 'c'.

Best and Worst Case Time Complexities

What is the time complexity of linear_search? As usual, this will depend upon the
number of iterations of the loop, but here we see something new: the number of iterations
depends not only on the size of things, but also on the particular target that is provided.
If the target happens to be the first thing in things, the loop only iterates once – this is
the best case out of all possible inputs. In the worst case, the target isn’t in the list at all,
and the loop goes through len(things) iterations.

More formally, let Tbest(n) be the time taken by linear_search on a list of size n in the
best case. That is, to compute Tbest(n), we time linear_search on all targets and all lists
of size n and return the smallest time. Of course, Tbest(n) is a function of n, and we can
express the growth of this function using asymptotic notation: Tbest(n) = Θ(1). This is
the best case time complexity of linear_search. Likewise, let Tworst(n) be the time taken
by linear_search on a list of size n in the worst case. By analogy, to compute Tworst(n),
we time the function on all targets and all lists of size n and return the largest time. Here,
the worst case takes time Tworst(n) = Θ(n). This is the worst case time complexity of
linear_search.
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We tend to focus on the worst case time complexity when discussing the efficiency of
algorithms11. In particular, we often pick algorithms based on which has better perfor-
mance in the worst case. For example, insertion sort is a sorting algorithm with Θ(n)
best case time complexity and Θ(n2) worst case time complexity. Merge sort, on the other
hand, has matching best case and worst case time complexities of Θ(n log n). While the
best case time complexity of insertion sort actually beats that of merge sort, we tend to
prefer merge sort because it is has a much faster worst case time complexity12.

Moreover, we can sometimes lower bound the worst case time complexity for a partic-
ular problem. For example, if we assume nothing about the order of the list to be searched,
any algorithm must loop through the entire list in the worst case, taking at least linear
time. Since linear_search takes Θ(n) in the worst case, it optimal, in the sense that no
other algorithm has a better worst case time complexity. Similarly, it can be shown that
any sorting algorithm13 takes at least Ω(n log n) time in the worst case. Since merge sort
takes Θ(n log n) in the worst case, it is – in a sense – an optimal sorting algorithm.

Lastly, when stating the time complexity of linear_search, we should report both the
worst case and best case time complexities. We should not say that the “time complexity is
O(n) and Ω(1)”, because this is needlessly imprecise. For instance, the previous statement
also holds for an algorithm which takes time Θ(

√
n) in both the best and worst cases.

Binary Search

Linear search has the best possible worst case time complexity if we make no assumption
on the input list. But what if the input is sorted? It turns out that we can do much better.

To motivate the algorithm, remember the following game (you have probably played
it before while on a long road trip). I am thinking of a number between 1 and 100. Your
task is to guess the number in as few guesses as possible. After each guess, I tell you
whether your guess is too high, too low, or that it is correct.

If you were a fan of linear_search, you might try guessing 1 first, and then 2, and
then 3, and so on, until you eventually come to the correct number. But this strategy feels
very inefficient. Instead, you might try guessing 50 first. I tell you that 50 is too high of
a number, and to guess again. With this information, you can immediately rule out not
only 50, but also every number greater than 50 – half of the possibilities! In fact, the only
valid guesses remaining are 1 through 49. You try the same strategy again, and guess
25. I tell you that this is too low. Now you know that the number is between 26 and 49.

11But not always! We may also use the average case time complexity of an algorithm, which is potentially
much better than its worst case performance. Computing the average case time complexity can be difficult.

12We are leaving out many details of the comparison. It is conceivable that insertion sort’s worst case
occurs on a very rare input, and that the average case time complexity is much better. It turns out, however,
that insertion sort’s average case time complexity is also quadratic. In general, however, describing the
performance of algorithm based on its worst case complexity can be misleading.

13To be more precise, any comparison sorting algorithm which works by comparing the list’s elements to
one another.
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Algorithm 4 Binary search

import math

def binary_search(things, target, start, stop):
"""
Searches things[start:stop] for the target.
Assumes that `things` is sorted.
"""
if start >= stop:

return None

middle = math.floor((start + stop) / 2)
if things[middle] == target:

return middle
elif things[middle] > target:

return binary_search(things, target, start, middle)
else:

return binary_search(things, target, middle + 1, stop)

You continue on, at each step halving the number of possibilities, until you find that the
number I was thinking of was 42. This is the principle idea behind binary search, a very
fast search algorithm whose code is shown in Algorithm 4.

Binary search shares some similarities with merge short. At every step, it breaks the
array into two pieces14. Unlike merge sort, it recursively searches only one of the pieces,
and not both. This is possible only because things is assumed to be sorted. Once we
compare the target to the middle element of the array, we know that we only need to
check either the left half or the right half, precisely because the list is sorted.

Time Complexity of Binary Search

Like linear search, binary search will also have a best case time complexity and a worst case
time complexity. In the best case, the thing we are looking for is right at the middle of
the list, and the answer is returned without making any recursive calls. Hence the best
case time complexity is Θ(1). The worst case input for linear search is also the worst case
for binary search: the item we are looking for isn’t in the list. Computing the time com-

14We do not physically break the array into two pieces by slicing, as we did in merge sort. That is because
slicing produces a copy, and copying takes linear time. Copying was necessary in merge sort, but it is not
necessary here – we instead keep track of the index of the middle of the list.
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plexity in this situation is similar to the analysis of merge sort in that it requires solving a
recurrence relation.

Let Tworst(n) be the time binary search takes whenever n = stop − start, but target
is not in things. Apart from the recursive call, everything else – computing the floor,
checking whether the middle element is the target, etc. – takes constant time. Although
there are two appearances of binary_search within the function body, only one of them
will run on a given call. Whichever call is made, it operates on a sub-array of things that
has at most n/2 elements. Therefore, the time it takes is at most Tworst(n/2). We therefore
arrive at the following recurrence relation:

Tworst(n) =

{
Θ(1), n = 1
Tworst(n/2) + Θ(1), n ≥ 2

As mentioned in the previous section, we can replace Θ(1) by 1 as long as we are OK with
a final answer in Θ-notation. Making this substitution:

=

{
1, n = 1
Tworst(n/2) + 1, n ≥ 2

Now we solve the recurrence by unrolling it. Since Tworst(n/2) = Tworst(n/4) + 1, we
have:

= (Tworst(n/4) + 1) + 1,
= Tworst(n/4) + 2.

And since Tworst(n/4) = Tworst(n/8) + 1, we also have:

= (Tworst(n/8) + 1) + 2,
= Tworst(n/8) + 3.

Continuing in this way, we see that on the kth step:

= Tworst(n/2k) + k.
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We know that Tworst(1) takes constant time, since this is the base case of the recursion.
Therefore we iterate this process until 2k = n. Assuming that n is a perfect power of two,
this occurs when k = log2 n. Substituting this value of k into the above, we find:

= Tworst(n/2log2 n) + 1 log2 n,
= Tworst(n/n) + log2 n,
= Tworst(1) + log2 n,
= 1 + log2 n,
= Θ(log n).

We have just shown that the worst case time complexity of binary search is Θ(log n).
To get an idea of just how fast this is, consider the following: Suppose that linear_search
takes n nanoseconds to find an element in the worst case if the input is a list of size n, while
binary_search takes log n nanoseconds in the worst case. It is estimated that there are
something like 1019 grains of sand on Earth. Suppose we assign each a unique number and
line them up from least to greatest. In the worst case, linear search would take roughly
1019 nanoseconds, or roughly 317 years, to search for a particular grain of sand. Binary
search, on the other hand, would take roughly 63 nanoseconds in the worst case. If you’re
still not impressed, consider the same problem – but replace “grains of sand on Earth”
with “atoms in the known universe”. A loose estimate of this latter quantity is 1080. In the
worst case, binary search can find a single atom – out of all of the atoms in the universe –
in roughly 265 nanoseconds.

If this seems like it is too fast to be true, remember that binary search makes an im-
portant assumption that linear search does not: it requires the input to be sorted. It turns
out that sorting a collection of n objects takes Ω(n log n) time in the worst case, which is
just slightly worse than Ω(n). Therefore, if you are given unsorted data and you’re do-
ing a single search, linear search is actually better. But if you are doing many subsequent
searches you might consider sorting the data and using binary search thereafter.

2.4.2 Picking In-Flight Movies

Suppose you are on a long flight to Hawaii. The airline lost your baggage the last time
you flew with them, and so they’ve generously given you a voucher for two free in-flight
movies. In order to minimize your boredom, you decide to find two movies such that the
sum of their durations is as close as possible to the duration of your flight. That is, we
wish to solve the following computational problem:

GIVEN: A list of n positive movie durations d0, . . . , dn−1 and a positive flight
duration, t.
COMPUTE: A pair of indices a, b ∈ {0, . . . n − 1} such that |(da + db) − t| is
minimized.
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This is an optimization problem. The objective function is L(a, b) = |(da + db) − t|,
and the search space is the set of all distinct pairs of numbers (a, b) taken from {1, . . . , n}.
The size of the search space is Θ(n2), and so the brute force algorithm solves the problem
in quadratic time.

Shrinking the Search Space

Suppose now that the input durations are sorted; that is, d0 ≤ d1 ≤ . . . ≤ dn−1. We will
design an algorithm which solves this problem in linear time15. While a brute force search
works by computing the objective function L on every element of the search space and
returning the minimizer, the new algorithm will eliminate large parts of the search space
on every iteration, shrinking it more and more until eventually nothing remains.

To see how the search space can be shrunk, consider the following concrete example.
The movies we can choose from have durations of 10, 20, 40, 50, and 100 minutes, respec-
tively, and our flight length, t, is 65 minutes long (short flight!). Suppose we first try
pairing the shortest movie (10 minutes) with the longest (100 minutes). In total, these two
movies will run for 110 minutes. This is longer than the flight by 45 minutes! We now
need to check if there is a better pair, but must we check all of them? No! Note that any
other pair involving the 100 minute movie will have at least as long of a total run time,
since the 10 minute movie was the shortest! In other words, out of any pair of movies
containing the 100 minute movie, this pair was the best possible. Hence we do not need
to check these other pairs: we can effectively eliminate any containing the 100 minute
movie from the search space.

Next, we again consider pairing the shortest remaining movie with the longest. The
shortest movie is still the 10 minute movie, but the longest remaining movie is the 50
minute movie. This pair has total duration of 60 minutes, which is 5 minutes less than
the flight duration. This is much better than the previous pairing, and is the best we
have seen so far. We still need to check that there isn’t a better pairing, however. We do
not need to consider pairings which involve the 100 minute movie – these have already
been eliminated. But we also no longer need to consider pairings containing the 10 minute
movie. To see why, note that pairing any other remaining movie with the 10 minute movie
can only decrease the total run time, moving it further from the target of 65 minutes. Hence
we no longer need to consider pairs involving the 10 minute movie.

We continue on like this, at each step considering the pair of the shortest and longest
remaining movies. If the total run time is longer than the target of 65 minutes, we elim-
inate the longer movie; otherwise we eliminate the shorter of the two. We keep track of
the best pair seen so far, and return it once we have eliminated all pairs.

15If the input is not sorted, we can use merge sort to first sort them in Θ(n log n) time, resulting in an overall
time complexity of Θ(n log n) + Θ(n) = Θ(n log n).
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Algorithm 5 Find the pair of movies whose total duration is closest to the target.

def optimize_entertainment(durations, target):
shortest = 0
longest = len(durations) - 1

best_pair = None
best_objective = float('inf')

for i in range(len(durations) - 1):
total_duration = durations[shortest] + durations[longest]

if abs(total_duration - target) < best_objective:
best_objective = abs(total_duration - target)
best_pair = (shortest, longest)

if total_duration == target:
return (shortest, longest)

elif total_duration < target:
shortest += 1

else: # total_duration > target
longest -= 1

return best_pair

Implementation

We now turn the intuition we’ve gained from this concrete example into the algorithm
shown in Algorithm 5. We are given as input a list durations which contains the movie
durations in ascending order, along with a floating-point number target which repre-
sents the target duration (i.e., the duration of the flight). We first introduce variables
shortest and longest which will hold the indices of the shortest and longest remaining
movies in durations, respectively. At the beginning of the algorithm, no movie pairs have
been eliminated, so shortest = 0 and longest = len(durations) - 1. Also introduce
a variable best_objective, which contains the smallest value of the objective seen so far,
and a variable best_pair, which tracks the corresponding pair of movies.

We then begin iterating. At every iteration, we will check the pair containing the
shortest remaining movie and the longest remaining movie. We compare this pair to the
best pair seen so far; if it is better, we update best_objective and best_pair. Having
done this, we next shrink the search space for the next iteration. If the total duration of
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the pair is exactly equal to the target, we can simply return the pair without proceeding
to the next iteration, since it is not possible to do better than this. On the other hand, if
the total duration of this pair is longer than the target, we can eliminate the longer movie
following the logic from the previous part. We must then update longest so that it is the
index of the longest movie remaining. Because durations is sorted, this index is simply
longest - 1, and we therefore update longest by decrementing it. Likewise, if the total
duration of the pair is shorter than the target, we eliminate the shorter of the pair by
incrementing shortest.

We iterate until shortest and longest are equal to each other, as at that point all
pairs consisting of unique movies have been eliminated. We could implement this with
a while-loop, but we in fact know exactly how many iterations should be performed.
Before the loop begins, the difference between shortest and longest is n − 1, where n is
the number of movies. With each iteration, the difference between the two decreases by
one. After n − 1 iterations, the difference will be zero, and we should terminate the loop.
Therefore, we iterate n − 1 times.





Chapter 3

Graphs

Contents
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.1 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1.2 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1.3 Terminology Involving Edges . . . . . . . . . . . . . . . . . . . . . 82
3.1.4 Paths and Connectedness . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Computer Representations of Graphs . . . . . . . . . . . . . . . . . . . . 86
3.2.1 Adjacency Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 Adjacency Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.3 Dictionaries of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.4 Node Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.1 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.3 Properties of BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.4 Time Complexity of BFS . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.5 Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.6 The Breadth-First Search Tree . . . . . . . . . . . . . . . . . . . . . 105

3.4 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.3 Start and Finish Times . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.4 DFS Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4.5 Topological Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

77



78 CHAPTER 3. GRAPHS

3.4.6 Edge Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.5 Weighted Graphs and Minimum Spanning Trees . . . . . . . . . . . . . 123

3.5.1 Distance Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.5.2 Minimum Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . 124

3.5.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

The first step in answering a data science question is to formulate it as a mathematical
problem involving data. But raw data by itself may not be expressed in the language of
mathematics – it could be, for instance, a video recorded by a camera at the front of a car,
a collection of text documents, or a list of the friendships between students at a school. In
order to frame the question mathematically, we must choose a way of representing these
entities (i.e., a video, a document, a list of friendships) as mathematical objects.

Two types of mathematical objects are most frequently used to represent data: vec-
tors and graphs. Vector representations are especially useful when attributes (or features)
are of primary importance. For instance, suppose we would like to predict the probability
that a person will develop heart disease. Modern medicine tells us that certain risk factors,
such as the individual’s age, cholesterol level, and sugar consumption, are most predic-
tive. It is therefore natural to represent a person as a list (or vector) of three numbers, each
quantifying the extent to which a different risk factor is present in the individual. We will
revisit vector representations in later chapters.

Graph representations, on the other hand, are used when the relationship between en-
tities is of primary importance. For example, suppose that a highly-contagious virus has
broken out in San Diego, and we wish to understand how it will spread. Naturally, the
virus is likely to spread quickly among communities of people who interact frequently
with one another. Therefore, an individual’s attributes are not quite as important as their
relationships with other individuals. A graph is a natural mathematical object for encod-
ing such relationships.

This chapter introduces graphs as mathematical objects and develops their theory. We
will then see how to represent graphs on a computer, and study several key algorithms
for working with graph data. We will conclude by developing graph-based methods for
performing fundamental data science tasks, such as clustering.

3.1 Definitions

A graph is a mathematical structure that encodes relationships between pairs of objects.
In data science, we may use a graph to represent, for example the relationships between
pairs of users in a social network – say, Facebook. In Facebook, users are the nodes of the
network. If we draw a line – or an edge – between any two users who are “friends”, then
we obtain something like the below picture:
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We can do something similar to represent Twitter, too. But note that Twitter’s notion
of a relationship between users is different than Facebook’s in that it is directional. That
is, a Facebook “friendship” is mutual – if I am Facebook friends with you, then you are
Facebook friends with me. But Twitter’s relationships are not mutual: I may follow you
on Twitter, but you may not follow me back. Therefore, when we draw a picture depicting
Twitter, our edges have arrows attached which capture who follows whom:

While we refer to both social networks as graphs, we distinguish them by the kinds of
edges they contain. A graph like Facebook whose edges have no direction (i.e., they are
lines instead of arrows) is called an undirected graph. A graph like Twitter whose edges
have a direction (i.e., they are arrows instead of lines) is called a directed graph.

3.1.1 Directed Graphs

We begin by formally defining a directed graph:

Definition 4. A directed graph (or digraph) G is a pair (V, E), where V is a finite set of
objects (called the nodes or vertices) and E is a set of ordered pairs of objects in V (called
the edges).

In the case of Twitter, the node set V is the set of users, and the edge set E consists of
ordered pairs of users. We will find a pair (a, b) in E if (and only if) user a follows user b.

Oftentimes when we work with graphs, we assume nothing about the elements of V;
that is, they are not people or users, but rather abstract “objects”. It is helpful to number
them or give them names. For instance, the below depicts an abstract graph whose nodes
are named a, b, c, and d:
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a b

c d

The node set of this graph is V = {a, b, c, d}. The edge set is:

E = {(a, c), (a, b), (d, b), (b, d), (b, b)}.

Some of the edges in the above graph deserve special mention. First, notice that there
is a self-loop from node b to itself, which we have written as (b, b). These edges are per-
missible according to Definition 4, which simply states that E is a “set of ordered pairs”.
Since (b, b) is an ordered pair, it is a valid edge. Self-loops cannot occur in Twitter, since
users cannot follow themselves. On the other hand, consider a graph of Reddit in which
an edge occurs between two users a and b if users a has liked a post by user b. Since
Reddit users can like their own posts, this graph will have self-loops.

Second, notice that there are two edges between b and d in the graph above: one in
each direction. This is valid. What is not permissible, however, is to have more than one
edge going in the same direction. For instance, the below picture does not depict a valid
directed graph:

a b

In fact, Definition 4 rules this situation out, since E is a “set of ordered pairs”. Recall that
sets cannot contain duplicate objects, so the same ordered pair (a, b) cannot appear twice
in E. Note that (a, b) and (b, a) are different ordered pairs, and so it is possible for both to
be in E.

The set of possible edges in a directed graph is the set of all possible ordered pairs. We
write this set as V × V; it is called the Cartesian product of V with itself. For instance, if
V = {a, b, c, d}, then:

V × V = {
(a, a), (a, b), (a, c), (a, d),
(b, a), (b, b), (b, c), (b, d),
(c, a), (c, b), (c, c), (c, d),
(d, a), (d, b), (d, c), (d, d)

}
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The edge set E of any graph with these nodes can contain any (or all) of the elements listed
above.

3.1.2 Undirected Graphs

We will now formally define the notion of an undirected graph – i.e., the type of graph we
might use to represent Facebook. An undirected graph differs from a directed graph in
that its edges have no direction. While edges in a directed graph are ordered pairs, edges
in an undirected graph will naturally be unordered pairs:

Definition 5. A undirected graph G is a pair (V, E), where V is a finite set of objects
(called nodes) and E is a set of unordered pairs of objects in V (called edges).

We should pause for a moment to elaborate on what is meant by “unordered pair”.
For the present purposes, we will define an unordered pair to be a set of two elements.
This is natural, since sets are unordered. That is, {a, b} is the same mathematical object
as {b, a}. One consequence of this definition – and a difference between directed and
undirected graphs – is that there are no self-loops in undirected graphs. This is because a
self loop between a node a and itself would be represented by the “set” {a, a}, but this is
not a set, as sets cannot contain duplicates.

While the edges of an undirected graph are unordered pairs and therefore sets, we will
not use set notation to write them. That is, we will write (a, b) instead of {a, b} to denote
an edge between nodes a and b. We should understand, however, that (a, b) is actually
the set {a, b}. To be clear, in an undirected graph, (a, b) and (b, a) are the same edge, while
they are two different edges if G is directed. The advantage of this uniformity in notation
will become clear shortly when we make statements about both undirected and directed
graphs, as it will allow us to write one sentence that holds for both types of graph.

As a concrete example of an undirected graph, consider the picture below:

a b

c d

The node set is V = {a, b, c, d}. The edge set is:

E = {(a, c), (a, b), (d, b)}.

Note that we cannot have two edges between the same pair of nodes. That is, the below
does not a depiction of a valid undirected graph:
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a b

This is because the set E is a set of unordered pairs. Note that we cannot find both (a, b)
and (b, a) in E, since (a, b) and (b, a) are considered to be the same unordered pair, and
sets cannot contain duplicates.

3.1.3 Terminology Involving Edges

The terminology used in graph theory can differ from author to author. In this course, we
will stick to a standard set of definitions.

First are terms which concern the relationship between an edge and the nodes it in-
volves. In a directed graph, the edge (u, v) is said to leave u and enter v. In an undirected
graph, the edge (u, v) is said to be incident upon both u and v. We may sometimes talk
about an edge “from” u “to” v in an undirected graph, but it should be understood that
such an edge has no actual direction, and we are simply using these words to suggest a
certain interpretation.

In an undirected graph, the set of neighbors of a node u consists of all of the nodes
which share an edge with u. In the Facebook graph, for instance, the set of a user’s neigh-
bors is simply the set of their friends. In a directed graph, the set of predecessors of a
node u is the set of nodes on the other end of edges entering u. In the Twitter graph, the
predecessors of a user u are all users who follow u. On the other hand, the set of succes-
sors of a node u consists of all nodes which are on the other end of edges leaving u. In the
case of Twitter, the successors of a user u are the users who are followed by u. Authors
differ in defining the neighbors of a node in a directed graph, with some preferring to
leave the term undefined altogether. In this course, we define a node’s neighbors to be
its successors – this will be useful when writing algorithms, as we will see in the coming
sections.

The in-degree of a node u in a directed graph is the number of edges which enter u,
and the out-degree of u is the number of edges which leave u. For example, in the Twitter
graph, where an edge (u, v) denotes the fact that user u follows user v, the in-degree of a
user’s node is the number of followers they have, while the out-degree is the number of
people they follow. The degree (or total degree) of a node in a directed graph is the sum
of the node’s in-degree and the node’s out-degree. Because edges in undirected graphs
have no direction, there is no concept of in-degree or out-degree. Rather, the degree of a
node in an undirected graph is simply the number of edges which are incident upon it.
The degree of a node in Facebook represents the number of friends the user has.

For instance, consider node b in the directed graph above. Its out-degree is 2, since
there are two edges leaving b (the edge (b, b) leaves b). Its in-degree is 3, since there are
three edges entering b (the edge (b, b) also enters b). Its total degree is therefore 5. In the
undirected graph show above, the degree of b is 2.
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A sometimes useful result about the degree of a graph is the following:

Claim 4. Let G = (V, E) be a graph (directed or undirected). Then

∑
v∈V

degree(v) = 2|E|.

Proof. Consider removing all of the edges from the graph, then adding them back one-by-
one. Adding each edge increases the degree of each of its members by one, and the total
degree by two (a self-loop increases the degree of its node by two).

3.1.4 Paths and Connectedness

The edges in a graph represent direct relationships between pairs of objects, but we are
often interested in higher-order relationships. For instance, consider an undirected graph
encoding all domestic flights. Each airport is a node in this graph, and there is an edge1

between two nodes (i.e., airports) if there is a direct flight from one to the other. There
are unfortunately no direct flights from San Diego to Columbus, Ohio, and so this graph
has no edge between these nodes. Still, I can get to Columbus from San Diego by taking a
series of one (or more) connecting flights. In other words, there is a path from San Diego
to Columbus. For instance, one such path is to fly from San Diego to Los Angeles to
Chicago to Columbus.

We will now capture the notion of a path in a formal definition. We will represent a
path by the sequence of nodes visited while traveling it. But not all sequences of nodes
are valid paths! For instance, if there is no direct flight from Phoenix to Columbus, then
there is no path from San Diego, to Phoenix, to Columbus. We can take this into account
by requiring that there is a direct flight between any consecutive pair of airports in the
sequence; that is, there is an edge between every consecutive pair of nodes in the sequence
of nodes. The definition we arrive at is as follows:

Definition 6. Let G = (V, E) be a graph (either directed or undirected), and let u, u′ ∈ V
be nodes. A path of length k from u to u′ is a sequence (v0, v1, . . . , vk−1, vk) of k + 1 nodes
in V (with k ≥ 0) such that v0 = u, vk = u′, and for each i ∈ {1, . . . , k}, (vi−1, vi) ∈ E.

There are several things about the above definition which should be noted. The first is
that it does not stipulate that the nodes in the path must be unique. In the context of our
example, this means that flying from San Diego to Denver to Houston, and then back to
Denver, and then onwards to Columbus, is in fact a valid path. Instead, we will say that a
path is a simple path if the nodes are unique.

1One might argue for using a directed graph here, because flights have a direction. On the other hand, if
there is a flight from one airport to another, there is almost certainly a flight back. If every edge in an directed
graph is accompanied by an edge in the reverse direction, there is nothing gained by using a directed graph,
and we can simply collapse each pair of edges into a single, undirected edge.
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Second, we have defined the length of a path to be one less than the number of nodes
contained within. In other words, the length of a path is the number of “hops” it makes.
In the context of our example, the length of a path between two airports is the number of
flights taken. Note that we might also say that the length of a path is the number of edges
along it, but we should be careful here: an edge can appear multiple times in a path, and
the length takes into account each appearance. That is, the number of unique edges in a
path can be smaller than the length of the path.

Thirdly, the above definition allows for paths of length zero. In fact, any node u ∈ V
has a path of length zero which starts and ends at itself, with zero edges along the way.
This is a consequence of the above definition, and in no way depends upon there being
self-loops or whether the graph is directed or undirected.

For example, consider the undirected graph below.

a b

c d

e

f

First, recall that not every sequence of nodes is a valid path. For instance, the sequence
(c, b, d, c) is not a path, since the edge (c, b) does not exist. Likewise, it is easy to see that
there is no path from c to f .

On the other hand, there is a path (of length 1) from c to d, namely, (c, d). But there
is also another path (of length 4) from c to d: (c, a, b, d). In fact, since the definition above
doesn’t require the nodes along the path to be unique, (c, a, b, d, c, a, b, d) is also a valid path
of length 7 between c and d. In fact, there are infinitely many paths from c to d under the
definition given above, since each loop around gives us another (longer) path. To exclude
these paths, we define a simple path to be a path in which each node along the path is
unique. There are exactly two simple paths from c to d in the graph shown: (c, d) and
(c, a, b, d).

The path (c, a, b, d, c) forms what we might call a cycle. More formally, a simple cycle
is a path (v0, v1, . . . vk) such that the length of the path is at least three and each node
in the path is unique, apart from the first and last node which must be the same (i.e.,
v0 = vk). (c, a, b, d, c) is a simple cycle, but (c, a, b, d, c, a, b, d) is not. Definitions of a cycle
vary from author to author, so it is important to verify the definition whenever you see the
word used formally. Under our definition, the path of flights from San Diego to Denver
to Columbus to Houston and back to San Diego is a simple cycle.

We say that a node v is reachable from a node u if there is a path from u to v. Intu-
itively, an airport is reachable from San Diego if there is a sequence of flights starting at
San Diego which takes me there. In the example above, b is reachable from c, as are both
a and d. But nodes e and f are not reachable from c. Perhaps somewhat surprisingly, we
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also say that node c is reachable from itself. In fact, in any graph, every node is reach-
able from itself. This follows from our definition of a path, since there is always a path of
length zero from a node to itself.

Note also that while the definition of a path is the same for directed and undirected
graphs, directedness still has consequences for reachability. For instance, if v is reachable
from u in an undirected graph, then u is reachable from v; we can simply follow the path
from u to v back to u. But this is not true in a directed graph! Since edges have a direction,
it may be that we can get to a node v starting at u, but we can’t get back to u from v. For a
simple example, consider the directed graph shown below:

a b c

There is a path from a to c, and so c is reachable from a. But there is no path from c to a:
all of the edges are one-way streets. So a is not reachable from c.

Consider again the undirected graph shown above. In terms of reachability, it appears
as though nodes fall into two distinct groups. The nodes a, b, c, and d are all mutually
reachable from one another. Likewise, the nodes e and f are reachable from each other.
However, no node in {a, b, c, d} is reachable from {e, f }, and vice versa. If we imagine
each node in the graph to be an island, and each edge to be a bridge, then we can drive
between all of the islands a, b, c, and d, and we can drive between e and f , but we can’t
drive from any of a, b, c, and d to either of e and f . That is, the graph has two “connected
components”. The definition below formalizes this notion for undirected graphs.

Definition 7. Let G = (V, E) be an undirected graph. A connected component of G is a
set C ⊂ V such that

1. any pair of nodes u, u′ ∈ C are reachable from one another; and

2. if u ∈ C and v ̸∈ C then u and v are not reachable from one another.

From the definition, the above graph has two connected components: {a, b, c, d} and
{e, f }. Note that a consequence of the definition is that connected components must be
maximal, in that you can’t split up the nodes of a connected component and obtain another
connected component. That is, {a, b} is not a connected component of the above graph,
because it violates the second part of the definition: the node c is not in {a, b}, but a, for in-
stance, is reachable from c. It also follows from the definition that connected components
of a graph are disjoint; a node u can only be in one connected components. Addition-
ally, any given node u must in some connected component, even if that component only
contains u. As a result, the connected components of the graph partition the nodes into
disjoint sets.

An undirected graph with exactly one connected component is said to be connected;
otherwise, it is disconnected. The undirected graph above has two connected compo-
nents, and is therefore disconnected.
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The above definition of a connected component is for an undirected graph, but we
can define connected components for directed graphs, too. In fact, directed graphs have
two types: weakly connected components and strongly connected components. The
weakly connected components of a digraph are obtained by replacing every directed edge
with an undirected edge (removing duplicates and self-loops) and finding the connected
components of the resulting undirected graph. The strongly connected components, on
the other hand, are the maximal sets of mutually-reachable nodes. More formally, we say
that two nodes u and u′ are mutually reachable if u can be reached from u′ and u′ can be
reached from u. We define strongly connected components as follows:

Definition 8. Let G = (V, E) be an undirected graph. A strongly connected component
of G is a set C ⊂ V such that

1. any pair of nodes u, u′ ∈ C are mutually-reachable from one another; and

2. if u ∈ C and v ̸∈ C then u and v are not mutually-reachable from one another.

For example, consider the following directed graph:

a b c

There is only one weakly connected component of the above graph: {a, b, c}. However,
there are two strongly connected components: {a, b} and {c}.

3.2 Computer Representations of Graphs

Having defined graphs mathematically, we now turn to working with graphs algorithmi-
cally. The first step towards this is representing a graph on a computer. In this section,
we’ll briefly cover two popular representations: adjacency matrices and adjacency lists.
We’ll then introduce a simple graph data structure written in Python.

3.2.1 Adjacency Matrices

An adjacency matrix represents a graph G = (V, E) as array of size |V| × |V|. To encode
a graph as an adjacency matrix, we first number its nodes from 0, 1, 2, . . . , |V|. We then
allocate a square array, arr. If the edge (i, j) exists in G, we set arr[i,j] = 1; otherwise,
we set arr[i,j] = 0.

This representation can be used for both undirected and directed graphs. In the undi-
rected case, the array arr is symmetric; that is, arr[i,j] == arr[j,i]. This is because
(i, j) and (j, i) are the same edge, and so we set arr[i,j] = arr[j,i] = 1. An example
of an undirected graph and its corresponding adjacency array2 is shown below.

2We are using Numpy to create the array. You can also using lists of lists, but indexing an element is then
done by writing arr[i][j] instead of arr[i,j].
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1 2

3 4 arr = np.array([
[0, 1, 1, 0],
[1, 0, 0, 1],
[1, 0, 0, 0],
[0, 1, 0, 0]

])

On the other hand, the adjacency matrix representing a directed graph is not neces-
sarily symmetric, since the edge (i, j) results in arr[i,j] == 1, but not arr[i,j]. An
example of a directed graph and its corresponding adjacency matrix is shown below.

1 2

3 4
arr = np.array([

[0, 1, 1, 0],
[0, 1, 0, 1],
[0, 0, 0, 0],
[0, 1, 0, 0]

])

Adjacency matrices have the advantage of simplicity, but they have a major disadvan-
tage that prevents them from being used in many practical applications: they can be very
wasteful of memory. An adjacency matrix stores one bit for each of the Θ(|V|2) possible
edges, whether the edge actually exists or not. But most real-world graphs are sparse in
the sense that the number of edges they contain is far fewer than the number of possible
edges. For instance, Facebook is estimated to have over 2 billion users, and so there are
almost (2 billion)2 possible edges. However, the average number of friends per Facebook
user is only around 200, resulting in around “only” 200 · (2 billion) edges – far fewer than
the possible number of edges! Instead of using an adjacency matrix, we should rather
store only the edges that exist; we will see such an approach in a moment. Nevertheless,
if the graph is dense – that is, it has close to the greatest number of edges possible – then
adjacency matrices are not so wasteful.

While we have introduced adjacency matrices as a way of representing graphs on
computers, they are also useful mathematical objects. That is, no matter how we choose
to represent a graph in a computer’s memory, we can still think of the graph’s adjacency
matrix when designing algorithms. The mathematical definition of an adjacency matrix
is nearly identical, apart from assuming that nodes are labeled starting with one, instead
of zero. Then an adjacency matrix is a |V| × |V| matrix A whose (i, j) entry Aij is one if
and only if edge (i, j) exists, and otherwise zero. An example of a mathematical adjacency
matrix is shown below:
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1 2

3 4

A =


0 1 1 0
1 0 0 1
1 0 0 0
0 0 1 0



3.2.2 Adjacency Lists

The major deficiency of the adjacency matrix representation is that it is wasteful of mem-
ory if the graph is sparse. Adjacency lists remedy this by storing only the edges which
exist in the graph.

To encode a graph as an adjacency list, we once again start by numbering the nodes
from zero to |V| − 1. We then create a list of |V| lists, where the ith list contains all of the
neighbors of node i. An example might help clarify. Consider the same undirected graph
as above. The first entry of the adjacency list is a list of all of node 1’s neighbors: nodes 2
and 3. The second entry is a list of node 2’s neighbors: nodes 1 and 4. And so on:

1 2

3 4 adj = [
[2, 3],
[1, 4],
[1],
[2]

]

Notice that if node i appears in node j’s list, then node j appears in node i’s list. This
is only the case if the graph is undirected. An example of a directed graph represented as
an adjacency list is shown below:

1 2

3 4
adj = [

[2, 3],
[2, 4],
[],
[2]

]

3.2.3 Dictionaries of Sets

The time complexity of performing various types of queries and operations on graphs
depends on the representation being used. For instance, querying whether or not an edge
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(u, v) exists takes constant time if the graph is represented using an adjacency matrix,
since we need only return arr[u,j]. With adjacency lists, on the other hand, it can take
Θ(V) time in the worst case, since we must search for v in a list of all of u’s neighbors,
which can potentially contain all of the nodes in the graph.

Instead of using a list to store a node’s neighbors, we may instead use a hash table.
A hash table is a container data structure which supports fast queries, additions, and
deletions. In particular, these operations take constant time on average – though they may
take linear time in the worst case. If the hash table is well-implemented and suitable
for the data at hand, then encountering the worst case is sufficiently rare that we can
effectively assume that these operations run in constant time. Additionally, if the set of
objects in the container is fixed (i.e., we aren’t adding or removing objects) and known
ahead of time, it is easy to design so that the worst case time complexity of querying is
Θ(1).

Python provides two data types which implement hash tables: set and dict (i.e.,
a dictionary). The difference between the two is that the elements in a dict (i.e., the
keys) have associated values, while the elements in a set have no associated values. Both
support constant time addition, deletion, and querying on average.

We can implement a fast graph representation using a dictionary of sets. The ap-
proach is very similar to that of the adjacency list representation, instead we replace the
outer list with a dict and the inner lists with sets. The principal advantage of using a
dict for the outer container is that it allows us to label nodes as something other than
0, 1, . . . , |V| − 1; for instance, we can label them with strings. The figure below shows a
graph whose labels are letters, and the corresponding dict of set representation:

a b

c d
adj = {

'a': {'b', 'c'},
'b': {'b', 'd'},
'c': set(),
'd': {'b'}

}

Here we have written set() to denote the empty set, since writing {} results in an empty
dictionary.

Using this representation, querying for the existence of an edge is a Θ(1) operation
on average, just as with adjacency matrices. To be precise, to determine whether the
edge (u, v) is in the graph, we first find u in the outer dict, which takes constant time on
average. This returns the set of u’s neighbors; we can check whether v is in this set in
constant average time. Hence in total the query takes constant time on average.

We noted above that if the elements to be stored in a hash table are fixed and known
ahead of time, then we can always design the table so that it supports constant time



90 CHAPTER 3. GRAPHS

queries in the worst case. Most of the graph algorithms we will analyze will not mod-
ify the graph, and so we may assume that the hash tables used in its representation are
well-designed3, and that querying for a node or edge has constant time complexity in the
worst case.

For now it is not necessary to understand how such a representation is implemented
in Python4. Rather, we will simply state the average case time complexity of the frequent
graph operations. The below table shows these time complexities for undirected graphs –
those for directed graphs are similar:

Operation Average Case

Adding a node Θ(1)
Removing a node with m neighbors Θ(m)
Adding an edge Θ(1)
Removing an edge Θ(1)
Querying for a node Θ(1)
Querying for an edge Θ(1)
Retrieving number of neighbors Θ(1)
Iterating over m neighbors Θ(m)

In fact, if a node has m neighbors, iterating over them can be done in Θ(m) time in the
worst case. This will be important to remember when analyzing the algorithms to come.

In what follows, we will assume that a dictionary of sets is used to represent graphs
unless stated otherwise, and we will analyze the time complexity of graph algorithms
accordingly.

3.2.4 Node Attributes

It is often useful to store attributes alongside the nodes of a graph. For instance, we might
wish to associate each airport in a graph of domestic flights with a rating of its restaurant
choices. These attributes may be used by a graph algorithm – for example, one which
finds a path from San Diego to Columbus consisting of airports with restaurants above a
4-star rating.

There are several ways of storing node attributes. In what follows, we will use hash
tables to map a node’s label to its attribute values. For instance, to keep track of the airport
ratings, we will use a Python dict named ratings, so that if u is a node in the graph,
ratings[u] returns the rating. From the previous discussion regarding hash tables, we

3Actual Python dicts and sets are mutable, and so they do not support constant time querying in the
worst case. But since we could replace dict and set with data structures which do support constant time ac-
cess, we’ll ignore this technicality and assume that the built-ins support constant time access, too. Practically-
speaking, the built-ins are plenty efficient.

4A full implementation is provided on the course website, if you are curious.
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will assume that looking up the attribute in this way takes constant time even in the worst
case5.

Another common approach is to store the attribute directly on the node object itself,
in which case it can be retrieved by writing u.rating. This is not an option if we are
using the dict-of-sets representation above, since nodes are referenced only by their label
(which is a str. number, or other hashable thing). As such, we have no node object on
which to store attributes.

3.3 Breadth-First Search

Consider again the graph of all domestic flights. Each node in the graph is an airport, and
there is an edge between two nodes (airports) if and only if there is a direct flight between
them. Perhaps the simplest question one can ask about this graph is whether or not there
is an edge (i.e., a direct flight) between two nodes (i.e., two cities). This is a simple edge
query, and it is easily answered by either looking at the appropriate entry of the adjacency
matrix or searching the adjacency list (or set, as it may be).

Other questions, however, are more difficult to answer. For instance: is Columbus
reachable from San Diego? That is, is there a sequence of flights starting from one place
and ending at the other? This cannot be answered by querying for the existence of a single
edge. Instead, the answer is found by exploring (or searching) the graph’s structure. A
graph search algorithm is a strategy for exploring the structure of a graph in a meaningful
way. In this section and the next, we will develop two search algorithms: breadth-first
search and depth-first search. We will see that, while similar, the two strategies have
different applications.

3.3.1 Search Strategies

In a basic sense, a graph search algorithm is just a particular strategy for visiting the nodes
of a graph, one-by-one, in a way that respects the graph’s edge structure. Of course, we
could visit nodes in whatever order you’d choose – say, in ascending order of their label,
so that we visit node 1, then node 2, then node 3, and so on, irrespective of whatever edges
exist or do not exist. But visiting the nodes in this way completely disregards the graph’s
structure, and is not all that useful. In particular, visiting the nodes in this way tells us
nothing about the connectivity of the graph. At a minimum, we expect that a search
started inside a connected component only visits nodes inside that component. Even if
the graph has only a single connected component, visiting nodes according to their labels
(or in any other arbitrary order) is not useful, since the fact that one node is visited before
another gives us no meaningful information about the relationship between these two
nodes.

5Remember that this is not technically true, except in specific cases.
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Instead, we will design two graph search strategies which do provide meaningful in-
formation about the relationship between nodes. When describing these strategies, it will
be helpful to distinguish between visiting a node, which we can think of as physically
standing on it, and discovering a node, which is like seeing it from a distance, but not vis-
iting it just yet. We will say that nodes which have been discovered but not yet visited are
pending. At any point during the search, a given node is in exactly one of three states:
visited, pending, or undiscovered.

The two strategies in this section adopt the following rules which serve to constrain
the search:

1. At every iteration, the newly-visited node is chosen among those that are pending
(i.e., discovered but unvisited).

2. When a node is visited, all of its undiscovered neighbors are marked as pending
before the node itself is marked as visited.

Note that the first rule is fairly general. It doesn’t say, for instance, that the next node
to be visited must be a neighbor of the last visited node, but merely that it must have been
marked as pending at some point.

These two rules together ensure that nodes are visited in a meaningful order, as the
following theorem shows:

Theorem 7. Suppose a graph search obeying the above rules starts at node u, and after some
number of iterations t visits node a node v. Then a path exists between u and v.

Proof. Consider marking each node with the iteration number on which it was found, so
that node u is marked with a time of 1 and node v is marked with time of t. Since node v
was visited, it must have been marked as pending by a node which was visited at some
iteration between 1 and t − 1. Likewise, that node must have been marked as pending
by a node visited at some iteration between 1 and t − 2. Iteratively applying this logic,
we obtain a chain of predecessor nodes, each marked with progressively earlier times,
necessarily ending with the node discovered at time 1, that is, node u.

Note that this proof works for directed and undirected graphs, and indeed the theorem
is true for both. Its converse is also true6:

Theorem 8. If two nodes u and v are connected by a path, then a search starting at u and satisfying
the above rules will eventually reach v.

Together, these two theorems mean that any search algorithm satisfying the above
rules will never leave the connected component it starts in, and it will visit all of the
nodes within. As a result, such an algorithm can be used to answer questions about the

6The proof is left to the reader. Hint: try proof by contradiction.
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graph’s connectivity, such as whether two nodes are connected by a path or if the graph
is connected or disconnected.

We will now develop two different strategies which implement the above rules:
breadth-first search and depth-first search. To motivate these, consider searching the
graph below:

1 2 3 4 5 6 7

Suppose we start our search by visiting node 4. We will depict the fact that this node
has been visiting by filling it as black:

1 2 3 4 5 6 7

The rules above state that after visiting node 4, we must mark its undiscovered neigh-
bors as pending. In this case, that means marking nodes 3 and 5, which we do by filling
them with gray:

1 2 3 4 5 6 7

We now have to pick the next node to visit. The first rule above says that we must
choose a pending node; that is, either node 3 or node 5. The choice is arbitrary; suppose
we pick node 3 to visit next, remembering that we will must visit node 5 at some point in
the future. We then mark its neighbor, node 2, as pending:

1 2 3 4 5 6 7

We must now pick the next node to visit. It is here that we reach a fork in the road.
There are two nodes marked as pending: node 2 and node 5. Which do we choose? There
are two natural answers. The first is to continue exploring the most recently discovered
node, which in this case is node 2. This approach is known as depth-first search (DFS),
since it will tend to move away from the starting node, deeper into the graph. The second
approach is to explore the node which was discovered first, which in this case is node
5. This is known as breadth-first search (BFS), since this strategy will search the graph
around the starting node, iteratively expanding outwards. We will now turn to develop-
ing BFS; depth-first search will be discussed in the sequel.
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3.3.2 The Algorithm

We will now implement the breadth-first search strategy. In a breadth-first search of a
graph, we visit nodes in the order they were marked as pending. As a result, the natural
data structure for storing the pending nodes is a first-in, first-out queue. As we will see,
the use of the queue is what separates BFS from DFS; the latter will use a last-in, first-out
stack.

The Python standard library’s collections module provides a data structure called
a deque, which stands for “double-ended queue”. A deque supports constant-time ap-
pends and pops from either side. It can therefore not only be used as an efficient queue,
but also as a stack. Note that while Python lists also support appending and popping
from either side, using a list as a queue is costly7.

When using a deque as a queue, we treat the front of the deque as the front of the
queue, and the end of the deque as the end of the queue. To get an element from the front
of the queue, we use the deque.popleft() method, and to push an element to the back of
the queue we use the deque.append() method.

As mentioned above, at any point in time during the search, a given node exists in one
of three states: visited, pending, or undiscovered. To keep track of this attribute, we will
use a simple dictionary mapping nodes to statuses. Before beginning the search, we set
each node to 'undiscovered'. We then mark the starting node as 'pending' and add it
to the queue.

At each iteration, a breadth-first search removes a node from the queue. It visits this
node, marks all of its undiscovered neighbors as pending, adds them to the queue, then
marks the current node as visited and moves onto the next iteration. This process con-
tinues until there are no nodes left in the queue. The code implementing this strategy is
shown in Algorithm 6.

Note that the above function will work for both directed and undirected graphs, as-
suming that graph.neighbors(u) returns the successors of u. This is the motivation for
defining the neighbors of a node in a directed graph to be the successors, as we did in the
previous section.

As written, bfs(graph, source) returns nothing. The above code should be consid-
ered a “foundation” upon which other graph algorithms can be built. For instance, we
will soon see that, with a slight modification, the above can be used to find the shortest
path between two nodes.

Example

Consider performing a breadth-first search on the below graph, starting with node 1:

7See https://wiki.python.org/moin/TimeComplexity for a list of time complexities of various list op-
erations. Popping from the front takes time linear in the number of elements.

https://wiki.python.org/moin/TimeComplexity
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Algorithm 6 Breadth-First Search
from collections import deque

def bfs(graph, source):
"""Start a BFS at `source`."""
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source]) # will use as a queue

# while there are still pending nodes
while pending:

u = pending.popleft() # pop from left (front of queue)
for v in graph.neighbors(u):

# explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
# append to right
pending.append(v) # append to right (back of queue)

status[u] = 'visited'

1

2

3

4

5

6

We begin by marking each node as 'undiscovered', which we will represent by filling a
coloring it white. Before the first iteration of the loop, we add node 1 to the queue and
mark it as 'pending'. We will color pending nodes gray. Therefore, going into the first
iteration, we have:

1

2

3

4

5

6

pending = [1]

During the first iteration, we pop node 1 from the queue and visit. We mark its neighbors
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(nodes 2, 3, and 4) as 'pending' and add them to the queue.

We have not yet said anything about the order in which graph.neighbors(u) re-
turns the neighbors of node u. In fact, this method can return the neighbors in any
order without affecting the correctness of the search. Nevertheless, the order in which
neighbors are returned directly affects the order in which they are added to the queue,
and therefore the order in which they are visited. For uniformity, we’ll adopt the con-
vention that graph.neighbors() generates nodes in ascending order of label. Hence
in this case, node 2 is added to the queue first, then node 3, followed by node 4.

Once all neighbors have been processed, we finish by marking the popped node as
'visited'. After the first iteration, we have:

1

2

3

4

5

6

pending = [2,3,4]

On the next iteration, we will visit node 2, since it is at the front of the queue. All of
node 2’s neighbors have been discovered, so we append nothing to the queue. After the
iteration, the situation is as depicted below:

1

2

3

4

5

6

pending = [3,4]

We visit node 3 on the next iteration:

1

2

3

4

5

6

pending = [4]

And then node 4:
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1

2

3

4

5

6

pending = [6]

Then node 6:

1

2

3

4

5

6

pending = [5]

And finally node 5:

1

2

3

4

5

6

pending = []

At this point, pending is empty, and so the search terminates.

“Full BFS”

As written, bfs will visit only those nodes which are reachable from the source; this
is typically the desired behavior. Sometimes, however, we with to continue on and visit
all of the graph’s nodes. We can perform a search of the entire graph by looping through
each of the graph’s nodes and calling bfs every time we discover a node which has not
been discovered by a previous BFS. For this to be efficient, we must have a way of passing
the dictionary of node statuses into bfs so that it does not create a new one every time it
is called. We can do so by adding status as a keyword argument to bfs. If this argument
is not provided, bfs will populate the dictionary as before. This change is implemented
in Algorithm 7.

With this change, we can run a “full” breadth-first search using the following code:

def full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
bfs(graph, node, status)
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Algorithm 7 Breadth-First Search with status Argument
from collections import deque

def bfs(graph, source, status=None):
"""Start a BFS at `source`."""
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source]) # will use as a queue

# while there are still pending nodes
while pending:

u = pending.popleft() # pop from left (front of queue)
for v in graph.neighbors(u):

# explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
pending.append(v) # append to right (back of queue)

status[u] = 'visited'

3.3.3 Properties of BFS

There are several key properties of breadth-first search which will help in understanding
how it works and in assessing its efficiency. Both of the properties below will pertain to
the “full” version of BFS, i.e., the version implemented by full_bfs above, in which all
of the graph are explored. Similar statements can be made about bfs.

Each node is added to the queue exactly once.

To see that a node cannot be added more than once, note that only 'undiscovered' nodes
are added to the queue. But once a node is added to the queue, it is immediately marked
'pending' – and it can never become 'undiscovered' again. To see that a node must be
added at least once, observe that the only way a node can become anything other than
'undiscovered' is to append it to the queue. The for-loop in full_bfs iterates over all
of the nodes, and calls bfs on any which are 'undiscovered'; bfs immediately adds the
node to the queue. Hence every node is added to the queue at least once. Together, these
imply that each node is added exactly once.
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Each edge is explored exactly once if the graph is directed, and twice if it is undirected.

During each iteration of the for-loop in bfs a single edge in the graph is “explored”;
in particular, the edge from the popped node u to its neighbor, v. From the previous
property, node u is popped from the queue exactly once. As a result, the directed edge
(u, v) is explored exactly once. On the other hand, the undirected edge (u, v) is the same
edge as (v, u), and so it is explored not only when u is popped, but also when v is popped,
for a total of twice.

3.3.4 Time Complexity of BFS

BFS is an iterative algorithm with a for-loop nested inside a while-loop. Intuitively, the
algorithm’s complexity will depend upon how many times the inner while-loop runs in
total. Our usual approach to calculating this is to a formula for the number of times that
the inner loop runs as a function of the outer iteration number. In this case, however,
this is not feasible: the number of iterations of the for-loop in bfs depends on how many
neighbors the node u has, and has no direct relationship to the outer loop iteration num-
ber.

Instead, we will compute the time complexity of the BFS algorithm using an approach
called aggregate analysis. While we do not know how many times the inner loop runs on
a particular iteration of the outer loop, it turns out that we can easily determine exactly
how many times it runs in aggregate over the course of the entire algorithm – and this is
all we need to know.

For simplicity, we will analyze the “full” version of BFS, full_bfs, which visits the
whole graph. Intuitively, this will upper-bound the run time of bfs, which may only
visit part of the graph. Before the search begins, full_bfs initializes the status of each
node in Θ(V) time. It then loops over every node in the graph, checking whether it is
'undiscovered' or not. These two lines are executed Θ(V) times, taking Θ(1) time per
execution for a total of Θ(V) time.

Switching our attention to bfs, we focus on the number of iterations of the for-loop
over the course of a single call to full_bfs. In the previous section, we observed that –
during the execution of full_bfs(graph) – each edge is explored exactly once if the graph
is directed, and exactly twice if the graph is undirected. Each iteration of the for-loop in
bfs_visit explores a single edge. Therefore, the inner loop iterates exactly |E| times in
total if the graph is directed, and exactly 2|E| times in total if the graph is undirected. On
each iteration, the loop spends constant time checking the status of nodes and appending
them to the queue, if need be. As a result, the inner for-loop takes Θ(E) time in total over
the course of the entire search.

Note that we haven’t said how many times bfs_visit is called! This depends on
the input graph, the source, and the order in which neighboring nodes are added to the
queue. Rather, we’ve said that in total, over all calls to bfs_visit, a total of Θ(|E|) time is



100 CHAPTER 3. GRAPHS

spent in the for-loop.
Since initializing the node statuses takes Θ(V) time, and exploring each edge takes

Θ(E) time, the time complexity of the algorithm as a whole is Θ(V + E). If we know that
one of |V| or |E| is larger than the other, we can simplify this expression. For instance, if
the graph is fully connected (meaning, it has every possible edge), then |E| = Θ(|V|2),
and the run-time simplifies to Θ(|V|2). On the other hand, if the graph has no edges, the
algorithm must still perform initialization (as well as add each node to the queue and pop
each node off), taking time Θ(|V|).

Lastly, since the time complexity of the “full” BFS is an upper-bound on the time com-
plexity of bfs, we have that the time complexity of the latter is O(V + E).

3.3.5 Shortest Paths

Breadth-first search gets its name from the fact that it searches broadly around the source
before moving deeper into the graph. We now make this key fact more precise. In what
follows, we will say that a node v is distance k away from u if the length of the shortest path
between u and v is k. The following important claim will not be proven, but is intuitively
true:

Claim 5. Suppose a breadth-first search is started from a node u, and let k be any natural number.
Then all nodes which are distance k from u are discovered and added to the queue before any node
whose distance is larger than k is added to the queue.

This claim has a very important consequence:

Theorem 9. Suppose that there is a path from node u to node v (u ̸= v). Furthermore, let d be the
length of the shortest path from u to v. Then during a breadth-first search started at node u, node
v is discovered while visiting a node which is distance d − 1 from u.

Proof. Suppose that node v is discovered during the BFS while visiting node v0. We want
to show that v0 is necessarily at distance d − 1 from node u.

When node v is discovered it is immediately added to the queue. The claim above
therefore implies that node v0 is at most distance d from u.

Node v0 cannot be less than d − 1 away from u, as then the path constructed by going
from u to v0 and then immediately to v would have length less than d, contradicting the
fact that the shortest path between u and v has length d.

Likewise, v0 cannot be distance d away from u, since then node v would have been
discovered prior to visiting v0. To see this, consider any shortest path from u to v, and let
v∗0 be the node right before v on this path. Note that v∗0 must be distance d − 1 from node
u. If it were the case that v0 is distance d away from u, then v∗0 would be added to the
queue before v0 as a consequence of the above claim. Hence if v were still undiscovered
when v∗0 was visited, it would have been discovered then. This contradicts the fact that v
is discovered while visiting node v0, and so v0 cannot be distance d from u.
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The above three paragraphs imply that node v0 cannot be less than distance d− 1 away
from u, and it cannot be more than distance d − 1 away. Therefore it must be distance d
away from u.

This theorem motivates us to modify bfs so that it returns a shortest path8 between
source and every node in the graph, as well as the shortest path distance between source
and every other node. While the latter is easily obtained from the former by computing
the length of the path, returning the distance can be done with little extra overhead and is
oftentimes more convenient.

Suppose that during a BFS started at node u, we discover a node v while scanning the
neighbors of a node v_0. We will say that v_0 is the predecessor of v. Of course, unless
v_0 is the source of the search, it will have its own predecessor. Following this chain of
predecessors back to the source node produces a path from the source node u to node v;
moreover, this path will have the fewest number of edges out of any path from source to
v. We will keep track of every node’s predecessor with an attribute dictionary, initialized
so that the predecessor of every node is initially None.

Recall that the order in which we process the neighbors of v_0 is arbitrary, and we
have chosen the convention that nodes are processed in increasing order by label for
reasons of simplicity and uniformity of presentation. But two different BFSs which
adopt different conventions for the order in which neighbors are processed will in
general produce different predecessors. This does not break the algorithm, but you
should be aware of this fact.

For instance, suppose we run a BFS on the graph below, starting at node 1:

1

2

3

4

You can check that if the BFS adopts the convention of processing the neighbors in
increasing order by label, then the predecessor of node 4 will be node 2. But if the BFS
adopts the convention of processing neighbors in decreasing order by label (which is
an equally-valid convention), the predecessor of node 4 will be node 3.

We will also keep track of each node’s distance from the source with an attribute
dictionary. Suppose once more that we discover a node v while scanning the neighbors

8Note the careful wording here: the algorithm will return a shortest path. We do not say that it will return
the shortest path, because there may be more than one.
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Algorithm 8 Breadth-First Search with status Argument
from collections import deque

def bfs_shortest_paths(graph, source):
"""Start a BFS at `source`."""
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source]) # use as a queue

# while there are still pending nodes
while pending:

u = pending.popleft() # pop from left (front of queue)
for v in graph.neighbors(u):

# explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
pending.append(v) # append to right (back of queue)

status[u] = 'visited'

return predecessor, distance

of a node v_0. If d is the distance from source to v_0, then the distance from source to v
is simply d + 1. Before searching, we set each distance to ∞; this represents the fact that
we have yet to discover a path of any length between the source and the node. We set the
distance from the source to itself to zero, since there is a path of length zero between any
node and itself.

Algorithm 8 adds these attribute dictionaries to bfs and updates them accordingly.
Note that if a node is not visited during the search – if it is in another connected compo-
nent, for instance – then its distance will remain at ∞ and its predecessor will be None.

For example, consider searching the graph below, starting at node 1:
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1

2

3

4

5

6

Before the loop begins, we set distances[u] to ∞ for every node u in the graph.
We then set distances[1] to zero, since it is the source. We will depict the value of
distance[u] for each node u by writing it below the node. For instance, after the “ze-
roth” iteration the situation is as follows:

1

2

3

4

5

6

0

∞

∞

∞

∞

∞

On the first iteration, nodes 2, 3, and 4 are discovered. These nodes are therefore
assigned a distance of one. The predecessor of each of these nodes is set to node 1; we
depict this by drawing a thick arrow from node 1 to each of its successors in the search.
Hence, after the first iteration we have:

1

2

3

4

5

6

0

1

1

1

∞

∞

The dictionary of predecessors will be:

predecessor = {
1: None,
2: 1,
3: 1,
4: 1,
5: None,
6: None

}

On the second iteration, node 2 is visited, and no nodes are discovered:
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1

2

3

4

5

6

0

1

1

1

∞

∞

Likewise, no new nodes are discovered when we visit node 3 on the third iteration:

1

2

3

4

5

6

0

1

1

1

∞

∞

On the fourth iteration, we visit node 4. It is then that we discover node 6; it is assigned a
distance of two and its predecessor is updated to be node 4:

1

2

3

4

5

6

0

1

1

1

∞

2

The dictionary of predecessors will be:

predecessor = {
1: None,
2: 1,
3: 1,
4: 1,
5: None,
6: 4

}

On the next iteration, node 6 is visited and node 5 is discovered. It is given a distance of
three, and its predecessor is updated to be node 5:

1

2

3

4

5

6

0

1

1

1

3

2



3.3. BREADTH-FIRST SEARCH 105

All node distances have been assigned at this point. You can verify that these are in-
deed the number of edges in the shortest path from the source node. Finally, the dictionary
of predecessors will read:

predecessor = {
1: None,
2: 1,
3: 1,
4: 1,
5: 6,
6: 4

}

We can read off the shortest path between the source and any node in the graph by
recursively looking up predecessors. For instance, consider finding the shortest path be-
tween node 1 and node 5. The node immediately before node 5 in this path must be node
6, since node 6 is node 5’s predecessor. Likewise, node 4 must come immediately before
node 6, since node 4 is node 6’s predecessor, and so on, such that the shortest path is
(1, 4, 6, 5).

The following function prints this list of predecessors in order, starting at the source:

def print_shortest_path(predecessor, source, dest):
if source == dest:

print(source)
elif predecessor[dest] is None:

print('There is no path.')
else:

print_shortest_path(predecessor, source, predecessor[dest])
print(dest)

3.3.6 The Breadth-First Search Tree

We have seen that a key application of breadth-first search is in finding the shortest path
between a source node and all other nodes in the graph. These shortest paths are encoded
in the predecessor dictionary which maps each node in the graph to its predecessor in
the search. We graphically represented the fact that a node v0 is the predecessor of a node
v by drawing an arrow from u to v, as in the figure below:
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1

2

3

4

5

6

0

1

1

1

3

2

Note that these arrows mark a distinguished subset of the edges of the graph – these
are the edges that the breadth-first traveled along. As a result, they effectively encode
the result of the search. For instance, to find the shortest path from node 1 to node 5, we
follow the arrows backwards from node 5 until we reach the source.

It is often convenient to work with a graph which is constructed from these distin-
guished edges alone. In particular, suppose we perform a BFS on a graph G = (V, E)
starting at node s, resulting in a predecessor dictionary. We define the breadth-first
search subgraph GBFS to be the undirected graph whose nodes are those which were
reached by the BFS, and in which edge (u, v) exists if and only if u is the predecessor of v;
i.e., predecessor[v] == u. More formally, GBFS = (VBFS, EBFS), where:

VBFS = {v ∈ V : predecessor[v] is not None} ∪ {s},
EBFS = {(u, v) ∈ E : predecessor[v] == u}.

This is set-builder notation, and it is very commonly used wherever discrete math is
applicable. The first line should be read as “VBFS is the set consisting of all nodes
v in V such that the predecessor of v is not None, unioned with the singleton set
consisting of just the source node, s. The reason for the union is that the source node
s has no predecessor and would otherwise be omitted, but it is visited by the search
and should therefore be included in the subgraph.

For example, the breadth-first search subgraph for the above graph will consist of all
nodes and every edge, except for the edge (2, 4). That is, it will be the graph below:

1

2

3

4

5

6

The breadth-first search subgraph is truly a “subgraph” of G in this sense that its nodes
form a subset of G’s nodes and its edges form a subset of E. Moreover, note that the graph
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is connected, and that the number of edges in the graph is precisely one fewer than the
number of nodes. We call such a graph a tree:

Definition 9. An undirected graph T = (V, E) is a tree if 1) it is connected; and 2) |E| =
|V| − 1.

Because of this, we say that an element of EBFS is a breadth-first search tree edge.
An important property of a tree is that there is exactly one path between any given

pair of nodes.
One node in the breadth-first search tree is special: the source node, s. We call a

tree with a distinguished node s a rooted tree, and s is called the root. A rooted tree
is technically an undirected graph, but we can unambiguously assign a direction to each
edge by pointing it away from the root. For example, the natural direction of each edge in
the breadth-first tree rooted at node 1 is depicted below:

1

2

3

4

5

6

The breadth-first tree is an important object because it effectively encodes the result
of a breadth-first search. For instance, we can recover a shortest path from the source of
the search to any other node in the graph by following the edges in the BFS tree. Note,
however, that the edges in the breadth-first search tree encode the predecessor of each
node, and this depends on the convention adopted by the BFS as to the order in which
neighbors are processed and added to the pending queue. As a result, the breadth-first
search tree is in general not uniquely determined.

3.4 Depth-First Search

Suppose you are an incoming DSC student at UCSD, and you are very excited to take
CSE 151: Machine Learning. Unfortunately, you cannot enroll in CSE 151 right away,
since it has prerequisites of DSC 40B and DSC 80. Of course, these courses have their own
prerequisites, which in turn have prerequisites, and so on. Undeterred, you find a list of
the required courses and their prerequisites online. You sit down with a pencil and paper
and try to work out which classes need to be taken and in what order so that you can meet
all of the prerequisites to take CSE 151.

Even without yet knowing any graph theory, you might draw something similar to
the directed graph shown in Figure 3.1. Here, each node is a course, and there is an edge
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DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

Figure 3.1: DSC Prerequisites

from course u to course v if course u is a direct prerequisite of course v; for instance, there
is an edge from “DSC 10” to both “DSC 20” and “DSC 40A”, since DSC 10 is a prerequisite
for both.

By drawing the course prerequisites as a graph, we can state the problem more for-
mally using the language of graph theory. More precisely, we aim to find an order in
which to take the courses (i.e., an ordering of the nodes) such that if there is an edge
from u to v in the graph above, then u is taken some time before v (though not neces-
sarily immediately before). Such an ordering of the nodes of a directed graph is called a
topological sort. One9 topological sort is the following:

1. MATH 18
2. DSC 10
3. DSC 40A
4. DSC 40B
5. DSC 20
6. DSC 30
7. DSC 80
8. CSE 151

Knowing what you now know about graphs, you might guess that such a topological
sort can be produced using a graph search algorithm, and you’d be right. But it turns
out that breadth-first search is not the best tool for the job. Instead, we will use a depth-
first search. Recall that on each iteration of a breath-first search, the node which has been
pending the longest is visited. In a depth-first search, on the other hand, the node which
has been pending for the least amount of time – i.e., the most recently discovered node –
is visited. As we will see, this has the effect of searching deeper into the graph on each
iteration, and will help us find a topological sort of the graph’s nodes.

9There are generally multiple topological sorts of the graph’s nodes. For instance, the order (DSC 10, DSC
20, DSC 30, MATH 18, DSC 40A, DSC 40B, DSC 80, CSE 151) is equally valid.
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Algorithm 9 Depth-First Search with status Argument
1 def dfs(graph, u, status=None):
2 """Start a DFS at `u`."""
3 # initialize status if it was not passed
4 if status is None:
5 status = {node: 'undiscovered' for node in graph.nodes}
6

7 status[u] = 'pending'
8 for v in graph.neighbors(u): # explore edge (u, v)
9 if status[v] == 'undiscovered':

10 dfs(graph, v, status)
11 status[u] = 'visited'

3.4.1 The Algorithm

Depth-first search is most naturally and elegantly stated recursively, as is shown in Al-
gorithm 9. Like BFS, depth-first search iterates through a node’s neighbors in order to
discover them. When an undiscovered neighbor is found, dfs recursively calls itself to
explore the corresponding edge. This recursive call drills deeper and deeper into the
graph until it reaches a node with no undiscovered neighbors to visit. It then “unrolls” by
“backtracking” until it returns to a node which has undiscovered neighbors remaining.
The process of drilling deeper into the graph and unrolling is repeated until, eventually,
the search visits all of the source’s neighbors and unrolls back to the source.

Example

Consider running a depth-first search on the graph below, starting at node 1.

1

2

3

4

5

6

As before, we will depict nodes with a status of 'visited' by filling them with black,
nodes which are 'pending' will be marked gray, and 'undiscovered' nodes will be
blank. We will show the current call stack to the right of the graph, with the level of
indentation denoting the nesting of calls. For conciseness, we will write dfs(u) as short-
hand for the call dfs(graph, u).
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At the time of the first call to dfs, each node status is 'undiscovered', and hence each
node is blank:10

1

2

3

4

5

6
dfs(1)

Next, the first call enters the for-loop iterating over node 1’s neighbors. Using the con-
vention that .neighbors() produces nodes in ascending order by label, a recursive call
is made to dfs(2). When this call is made, the parent call to dfs(1) is suspended in the
middle of the for-loop, to be resumed later. At the time of the call to dfs(2), node 1 has
been marked as pending:

1

2

3

4

5

6
dfs(1)

dfs(2)

While executing dfs(2), node 2 is marked as pending. Next, node 4 is discovered and a
recursive call to dfs(4) is made. At this time, the status of the search is as shown:

1

2

3

4

5

6
dfs(1)

dfs(2)
dfs(4)

During the call to dfs(4), node 5 is discovered and a recursive call to dfs(5) is made. At
the time of this call, the situation is as depicted:

10Technically, each node’s status is set immediately after the dfs call, but can imagine that the already-
initialized status has been passed into the function.
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1

2

3

4

5

6
dfs(1)

dfs(2)
dfs(4)

dfs(5)

During the execution of dfs(5), node 5 is marked as pending. Next, its neighbors are
iterated through, but none of them are 'undiscovered'. Hence no recursive calls are
made. The for-loop ends, node 5 is marked as 'visited', and the call to dfs(5) returns.
The search “backtracks” to dfs(4), finding itself in the following situation:

1

2

3

4

5

6
dfs(1)

dfs(2)
dfs(4)

The call to dfs(4) was suspended in the first iteration of the for-loop in order to make a
recursive call to dfs(5). When the search “backtracks” to dfs(4), the call resumes exactly
where it left off. It proceeds to the next iteration of the for-loop and discovers node 6. A
recursive call to dfs(6) is made. As with the call to dfs(5), this recursive call finds no
undiscovered nodes and terminates after marking node 6 as 'visited'. Immediately
after the call to dfs(6) terminates, the status of the search is as shown:

1

2

3

4

5

6
dfs(1)

dfs(2)
dfs(4)

The search now finds itself back in the call to dfs(4). At this point, there are no neighbors
of node 4 left to discover. Node 4 is marked as 'visited', and the search “backtracks”
to node 2. Again, there are no new nodes to discover, and so the search “backtracks” all
the way to the source call, dfs(1). At the moment this call is resumed, the situation is as
shown below:
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Algorithm 10 “Full” DFS
def full_dfs(graph):

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
dfs(graph, node, status)

1

2

3

4

5

6
dfs(1)

The call to dfs(1) was suspended during the first iteration of the for-loop. Continuing
on to the next iteration, node 3 is discovered and a recursive call is made to dfs(3). This
call terminates after marking node 3 as visited, returning to dfs(1). The root call then has
no more work left to do, and it too terminates after marking node 1 as 'visited'.

“Full DFS”

Like bfs from the previous section, a call to dfs will only visit those nodes which are
reachable from the source. As with BFS, we can implement a “full” version of DFS which
visits all of the nodes of the graph. In fact, the code for full_dfs is nearly identical to that
of full_bfs; we simply change bfs for dfs. The result is shown in Algorithm 10.

3.4.2 Time Complexity

As with breadth-first search, we will find the time complexity of the “full” DFS imple-
mented in full_dfs. This will obviously upper-bound the time complexity of dfs.

Our implementation of DFS is recursive, and so we might think to write and solve a
recurrence relation in order to find its time complexity. However, writing a recurrence
relation for dfs is not easy, since we do not know how many recursive calls will be made
from each parent call. Instead, we will use aggregate analysis as we did with bfs in the
previous section.

First, note that the initialization of status in full_dfs will take Θ(V) time, as will
iterating over the nodes of the graph and checking whether each is undiscovered. What
remains is to determine the time taken in aggregate by all calls to dfs. Intuitively, this
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will depend on the total number of executions of the for-loop in Line 22 of dfs. As the
comment in Line 22 suggests, each iteration of this for-loop explores an edge in the graph.
The question thus becomes: how many time is each edge explored?

To calculate this, first note that dfs is called at most once for each node, since it is only
called on nodes which are marked as 'undiscovered', and it immediately marks such
nodes as 'pending'. In fact, dfs is called at least once for every node, due to the for-loop
in full_dfs. As a result, dfs is called exactly once for each node in the graph.

Now consider an arbitrary edge, (u, v). If the graph is directed, this edge is explored
exactly once: when dfs is called on node u. On the other hand, if the graph is undirected
the edge is explored exactly twice: when dfs is called on node u, and again when it is
called on node v. As a result, each edge is explored Θ(1) times, and the total number
of executions of Line 22 is Θ(E). In sum, the total time taken by full_dfs is therefore
Θ(V + E) – the same as breadth-first search.

Since the time complexity of full_dfs upper-bounds that of dfs, the time complexity
of the latter is O(V + E).

3.4.3 Start and Finish Times

As with breadth-first search, the order in which nodes are visited in a depth-first
search reveals meaningful information about the structure of the graph. But as we saw
above, depth-first search does not finish visiting one node before visiting the next; instead,
the visit to the first node is suspended while the neighboring nodes are visited. It is only
after all neighbors have been visited that the search finishes visiting the first node. It turns
out that the order in which the search finishes visiting nodes is also meaningful. As such,
we will keep track of two “times” for each node: the time at which we begin visiting the
node – i.e., the start time – and the time at which we finish visiting the node – i.e., the
finish time.

The code for the modified depth-first search is shown in Algorithm 11. We use dic-
tionaries start and finish to keep track of the start and finish times of each node. In
addition, we use a clock variable keep track of the “time”; in this case, clock is an in-
teger variable that is incremented whenever we start visiting a node and whenever we
finish. These all must be passed between calls to dfs_times. In principle, this can be done
by making each an argument to the function. Instead, we will use Python’s dataclasses
module, added in Python 3.7, to create a Times dataclass which has three attributes: clock,
start, and finish. This allows us to pass one object (an instance of Times) instead of
three, making the code somewhat cleaner.

In addition to computing the start and finish times for each node, we will also keep
track of each node’s predecessor, as was done in bfs_shortest_paths above.
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Algorithm 11 Depth-First Search with Start and Finish Times
1 from dataclasses import dataclass
2

3 @dataclass
4 class Times:
5 clock: int
6 start: dict
7 finish: dict
8

9 def full_dfs_times(graph):
10 status = {node: 'undiscovered' for node in graph.nodes}
11 predecessor = {node: None for node in graph.nodes}
12 times = Times(clock=0, start={}, finish={})
13 for u in graph.nodes:
14 if status[u] == 'undiscovered':
15 dfs_times(graph, u, status, times)
16 return times, predecessor
17

18 def dfs_times(graph, u, status, predecessor, times):
19 times.clock += 1
20 times.start[u] = times.clock
21 status[u] = 'pending'
22 for v in graph.neighbors(u): # explore edge (u, v)
23 if status[v] == 'undiscovered':
24 predecessor[v] = u
25 dfs_times(graph, v, status, times)
26 status[u] = 'visited'
27 times.clock += 1
28 times.finish[u] = times.clock

Example

Consider once again the directed graph of DSC prerequisites. We will perform a depth-
first search on this graph, recording start and finish times along the way.

When we call full_dfs_times, it starts the depth-first search by iterating through
graph.nodes. The order in which these nodes are produced is arbitrary, and so the search
may start at any node. Suppose for this example that the first node produced is “MATH
18”. Then this node is visited and assigned a start time of 1:
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DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

While visiting “MATH 18”, we discover “DSC 40A” and immediately perform a recursive
call to visit it. When we do, the clock is incremented to 2; this becomes “DSC 40A”’s start
time. Notice, too, that “MATH 18” is the predecessor of “DSC 40A” in the search. We
denote this by the bold arrow below:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

While visiting “DSC 40A”, node “DSC 40B” is discovered. A recursive call is made, and
this node is assigned a start time of 3:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

start = 3
finish = ?

When we visit “DSC 40B”, the node has two undiscovered neighbors. Using the con-
vention that .neighbors() returns neighbors in ascending order by label, “CSE 151” is
discovered first. A recursive call is made, and “CSE 151” is assigned a start time of 4:
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DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

start = 3
finish = ?

start = 4
finish = ?

“CSE 151” has no undiscovered neighbors, and so the recursive call terminates. Before it
does, however, the clock is incremented to 5. This becomes the node’s finish time:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

start = 3
finish = ?

start = 4
finish = 5

Now the search resumes the visit to “DSC 40B”. This node has only one undiscovered
neighbor remaining: “DSC 80”. A recursive call is made to this node, the clock is incre-
mented to 6, and this becomes its start time:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

start = 3
finish = ?

start = 4
finish = 5

start = 6
finish = ?

“DSC 80” has no undiscovered neighbors, so the visit terminates by incrementing to clock
to 7. This becomes the node’s finish time:
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DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

start = 3
finish = ?

start = 4
finish = 5

start = 6
finish = 7

The search resumes at “DSC 40B”, but now there are no undiscovered neighbors remain-
ing. At this point we are finished with the node: we increment the clock to 8 and save this
as the node’s finish time:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = ?

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

The search then “backtracks” to “DSC 40A”. Again, there are no new nodes to discover,
and so we are finished with the node. It is assigned a finish time of 9:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = ?

start = 2
finish = 9

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

The search finally returns to where it started: “MATH 18”. At this point there are no
undiscovered neighbors to visit, and so we are finished with the node. It is assigned a
finish time of 10:
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DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = 10

start = 2
finish = 9

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

Execution of the program then returns to the for-loop in full_dfs_times. The loop will
iterate until it finds the next undiscovered node remaining in the graph, at which point
dfs_times will be called on that node. The order in which the nodes are produced is
arbitrary, but let’s say that the next undiscovered node is “DSC 20”. At the time of this
call, the clock is at 10; it is incremented, and 11 is assigned as the start time of “DSC 20”:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = 10

start = 2
finish = 9

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

start = 11
finish = ?

Next, “DSC 30” is discovered and given a start time of 12. This node has no undiscovered
neighbors, so it immediately finishes at time 13. The search returns to visiting “DSC 20”
which at this point has no undiscovered neighbors. As a result, it too is marked as visited
and assigned a finish time of 14:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = 10

start = 2
finish = 9

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

start = 11
finish = 14

start = 12
finish = 13
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Execution returns to the for-loop in full_dfs_times, which iterates until “DSC 10” is
encountered. At this point, dfs_times is called on the node. Since it has no undiscovered
neighbors, the start and finish times are 15 and 16, respectively:

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = 10

start = 2
finish = 9

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

start = 11
finish = 14

start = 12
finish = 13

start = 15
finish = 16

Observe that the graph has 8 nodes and the largest finish time is 16. This is not a
coincidence: the largest finish time will always be twice the number of nodes.

3.4.4 DFS Forest

As in the case of breadth-first search, it is often useful to construct a graph encoding the
predecessor relationship between nodes. In particular, suppose we call full_dfs_times
on a graph G = (V, E), resulting in a predecessor dictionary. As we did with BFS in
the previous section, we define the depth-first search subgraph GDFS to be the undirected
graph whose nodes are those which were reached by the DFS, and in which edge (u, v)
exists if and only if u is the predecessor of v; i.e., predecessor[v] == u. More formally,
GDFS = (VDFS, EDFS), where:

VDFS = {v ∈ V : predecessor[v] is not None} ∪ {s},
EDFS = {(u, v) ∈ E : predecessor[v] == u}.

The elements of EDFS are called depth-first search tree edges.
The depth-first search subgraph is an undirected graph whose connected components

are trees. We call such a graph a forest. The depth-search forest resulting from the depth-
first search performed in the previous section is shown in Figure 3.2, with the root of each
subtree drawn in red.

Since each edge in a DFS forest has a natural direction (pointing away from the root
of its connected component), we can think of it as a directed graph, F. We will say that
node v is a descendent of a node u in this tree if v is reachable from u in F. Likewise, we
say that v is an ancestor of u if u is reachable from v in T. For example, the descendents of
“DSC 40A” in the DFS forest above are “DSC 40B‘, “DSC 80”, and “CSE 151”. Node “DSC
40A” has only one ancestor: “MATH 18”.
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DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 CSE 151

start = 1
finish = 10

start = 2
finish = 9

start = 3
finish = 8

start = 4
finish = 5

start = 6
finish = 7

start = 11
finish = 14

start = 12
finish = 13

start = 15
finish = 16

Figure 3.2: Start and finish times for the prerequisite graph.

The start and finish times of nodes and their descendants are related. Intuitively, we
do not finish visiting a node in a DFS until we have finished visiting all of its descendants.
As a result, we have the following claim:

Claim 6. Let v be a proper descendent of a node u in a DFS forest. Then:

times.start[u] < times.start[v] < times.finish[v] < times.finish[u]

3.4.5 Topological Sort

Consider once again the graph of prerequisites shown in Figure 3.1. We wish to find a
topological sort of its nodes in order to create a schedule of classes in which each course
is taken after all of its prerequisites have been satisfied. In the language of graph theory,
node u should appear before all nodes which are reachable from u in the prerequisite
graph.

Intuitively, whether or not a node v is reachable from u is related to the finish times
of both nodes. To make this precise, we must first define the concept of a directed acyclic
graph. A directed cycle is a path from a node to itself which contains at least one edge.
For instance, (a, b, c, d, a) is directed cycle in the graph below:

a

b c

d

A directed acyclic graph (DAG) is one which contains no cycles.
Our prerequisite graph above is a directed acyclic graph, and it had better be: if there

were a cycle in the graph there would be no way to satisfy all prerequisites. For instance,
suppose there were a cycle:
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DSC 10 DSC 20 DSC 30

This would mean that, in order to take DSC 30, one must take DSC 20. In order to take
DSC 20, one must take DSC 10. But in order to take DSC 10, one must take DSC 30! Clearly
this isn’t possible; there is a circular dependency. In general, a topological sort of a directed
graph is possible if and only if the graph is acyclic.

Armed with the definition of a DAG we are able to make the key intuition precise:

Claim 7. Suppose v is reachable from u( ̸= v) in the directed acyclic graph G. Then the finish
time of v is less than the finish time of u.

We will prove this claim informally. There are two cases: either v is a descendant of
u in the DFS forest, or it is not. If it is a descendant of u in the DFS forest, then Claim 6
implies that its finish time comes before u’s finish time. If it is not a descendant of u in the
DFS forest, then v must have been discovered by a previous search started at a different
source. In this case, v’s finish time again comes before u’s finish time. Therefore, in both
cases, v’s finish time comes before u’s finish time.

The above claim suggests an algorithm for performing a topological sort. If a node
v has a finish time which comes before node u, it should be placed after node u in the
sorted order. That is, we should sort the nodes by decreasing order of their finish time.
Algorithm 12 provides Python code for this approach.

Algorithm 12 Topological sort.
def by_finish_time(item):

return item[1]

def topological_sort(graph):
times, predecessor = full_dfs_times(graph)
# sort nodes in decreasing order by finish time
return sorted(times.finish.items(), key=by_finish_time, reverse=True)

Consulting Figure ??, which shows the start and finish times of a DFS on the data
science prerequisite graph, this strategy results in a topological sort of:

1. DSC 10
2. DSC 20
3. DSC 30
4. MATH 18
5. DSC 40A
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6. DSC 40B
7. DSC 80
8. CSE 151

3.4.6 Edge Classification

Recall that an edge (u, v) in a graph G = (V, E) is a DFS tree edge is v is discovered while
visiting the node u during a DFS. Only a select few of the edges in the graph are tree
edges, but we can classify the non-tree edges into three distinct groups based upon how
they figure into the DFS forest. It will turn out that labeling the edges in this way holds to
key to detecting the presence of cycles in the graph.

Suppose that a full DFS is run on the directed graph below, and assume that the first
source node was node 1. The tree edges found during this DFS are labeled with a T.
Suppose that the second source used by the full DFS is node 4; the tree edges found
during this search are also labeled with T.

1

2

3

4

5

6

T

T

C

T

T

FB

T: tree
B: back
F: forward
C: center

Now consider how we might label the rest of the edges in the graph, starting with
(3, 4). Because this edge points from a node 3 back to a higher node in the tree, we will call
it a back edge. On the other hand, edge (1, 3) points forward from a node high on the tree
to another node which is lower on the tree (and which isn’t a direct successor); as such, we
will call it a forward edge. Edge (4, 1), points from a node in one tree of the forest to a
node in another tree; we will therefore call it a cross edge.

We can use node statuses and start/finish times to define the edge classifications more
precisely. Suppose that when the edge (u, v) is encountered during the visit to node u:

• v is 'undiscovered'. Then (u, v) is a tree edge;

• v is 'visited'. Then (u, v) is a cross edge;

• v is 'pending' and start[v] > start[u]. Then (u, v) is a forward edge.

• v is 'pending' and start[v] < start[u]. Then (u, v) is a back edge.
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It can be shown that a directed graph has a directed cycle if and only if a DFS finds a
back edge.

3.5 Weighted Graphs and Minimum Spanning Trees

Consider again the flight graph discussed in previous sections in which there is an edge
between two airports if there is a direct flight between them. Of course, some flights are
cheaper than others, and we may wish to encode the cost of each flight within the graph
itself. This is one motivation for introducing the concept of an edge-weighted graph, in
which each edge is associated with a real number, known as a weight. More formally:

Definition 10. An edge-weighted graph is a graph G = (V, E) together with an associ-
ated edge weight function, ω : E → R.

Arrow notation. The notation ω : E → R means that the function ω maps every
element of the set E to an element in the set R (the set of real numbers). In particular,
this means that every edge must have an associated weight.

There are also node-weighted graphs, whose nodes are associated with scalar values,
as well as graphs whose edges and nodes have weights. In practice, edge-weighted graphs
seem to be most common. Therefore, when we use the term weighted graph without
qualification, we are referring to an edge-weighted graph.

An example of a weighted graph is shown below.

a

b

c

d

3.14

-2.17

0

Note that every edge in the graph has been assigned a weight. Weights may be positive
or negative. This example shows a weighted undirected graph, but weighted directed
graphs are also permissible.

Many problems can be framed in terms of weighted graphs. For instance, suppose
we wish to find the sequence of flights from San Diego to Columbus with the smallest
total cost. That is, we wish to find the shortest weighted path. While breadth-first search
finds the shortest path in unweighted graphs, it does not solve the problem for weighted
graphs. Instead, we must use a different algorithm which is specifically designed to take
edge weights into account, such as Dijkstra’s algorithm, or the Floyd-Warshall algorithm.
We will not study these algorithms in this class.
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×
x⃗1 = (0,−1)

×
x⃗4 = (0, 1)

× x⃗3 = (1, 0)×x⃗2 = (−1, 0)

(a) The vectors in the set X.
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(b) The distance graph for X.

Figure 3.3

3.5.1 Distance Graphs

Data often comes to us as a set X of vectors in d-dimensional space, Rd. There is a natural
weighted graph associated with such a set of vectors: we make a node for each vector,
and an edge between every pair of nodes. We then define the weight of the edge between
nodes x⃗ and y⃗ to be the distance between them, ∥x⃗ − y⃗∥. We call the resulting graph the
distance graph representing X. More formally:

Definition 11. Let X = {x⃗1, . . . , x⃗n} be a finite set of vectors in Rd. The distance graph
associated with X is the weighted, undirected graph G = (V, E, ω), where:

V = {1, . . . , n},
E = {(u, v) : u, v ∈ V and u ̸= v},
ω((u, v)) = ∥x⃗u − x⃗v∥.

For example, suppose we have a set of vectors X = {x⃗1, x⃗2, x⃗3, x⃗4}, where

x⃗1 = (0,−1)⊺,
x⃗2 = (−1, 0)⊺,
x⃗3 = (1, 0)⊺,
x⃗4 = (0, 1)⊺.

These vectors are depicted in Figure 3.3a. Then the distance graph for X is as shown in
Figure 3.3b.

3.5.2 Minimum Spanning Trees

An important problem concerning weighted graphs is that of computing a minimum
spanning tree (MST), that is, a tree11 which spans all of the nodes of the graph and whose

11Recall that a tree is a connected graph which has one fewer edge than node.
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1 2 3

4 5 6

7 8 9

(a) A graph, G.

1 2 3

4 5 6

7 8 9

(b) A spanning tree of G.

1 2 3

4 5 6

7 8 9

(c) Another spanning tree of
G.

Figure 3.4

edges have the smallest total weight. Computing the minimum spanning tree is a crucial
step in many other algorithms, and we will soon see that it is used in a simple clustering
algorithm.

We start by defining a spanning tree:

Definition 12. Let G = (V, E) be a connected, undirected graph (weighted or un-
weighted). A spanning tree is a tree T = (V, ET) which contains all of the nodes in
G, and whose edge set ET is a subset of E.

There may be many spanning trees of the same graph. For instance, Figure 3.4 shows
two spanning trees of the same graph G. Note that each edge in the spanning tree must
appear in the graph, G.

Intuitively, a minimum spanning tree of a weighted graph is a spanning tree whose
total edge weight is minimized. More formally:

Definition 13. Let G = (V, E, ω) be a connected, weighted, undirected graph. Let T be
the set of spanning trees of G. For any spanning tree T ∈ T , define the total edge weight
ω(T) to be:

ω(T) = ∑
(u,v)∈T

ω((u, v)).

A minimum spanning tree is a spanning tree T∗ ∈ T such that for any spanning tree
T ∈ T , ω(T∗) ≤ ω(T).

For instance, consider the weighted graph shown below:
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One can verify that a minimum spanning tree of this graph is the tree below:
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This tree has total weight 3
√

2. Of course, this is not the only spanning three with this
total weight; there are in fact four minimum spanning trees of this graph.

3.5.3 Clustering

Section 1.6.3 introduced the problem of clustering a data set into two groups. Figure 3.5a
shows the geyser eruption data set that was considered in that section. The geyser appar-
ently erupts in one of two “modes”: either the geyser erupts for a small duration after a
small waiting period, or it erupts for a long duration after a lengthy wait time. We wish
to design an algorithm for automatically discovering this structure in the data.

We formalized this problem as one of partitioning the data into clusters B and R which
are maximally separated, as in Figure 3.5b. More precisely, we defined the separation
δ(B, R) of two sets B and R to be the smallest distance between any two points, one of
them in B and the other in R. That is:

δ(B, R) = min
b⃗∈B,⃗r∈R

∥⃗b − r⃗∥.

The formal computational problem then becomes:

GIVEN: Data vectors X = {x1, . . . , xn}.
COMPUTE: A partition (B, R) of the data with maximum separation, δ(B, R).

This is an optimization problem, and the brute-force approach of trying every possible
partitioning of the data takes exponential time. It turns out, however, that this problem
can be efficiently solved by computing a minimum spanning tree of the data.
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(a) The geyser eruption data.
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(b) The eruption data clustered into two groups.

Figure 3.5

To see how we may obtain a clustering from a minimum spanning tree, suppose we
are given the following data:

Consider the distance graph of this data. A possible minimum spanning tree of this graph
is shown below, where the graph’s nodes are placed in the same positions as the data
points they represent:

A minimum spanning tree is a connected graph, so deleting a single edge necessarily
results in two connected components. Suppose we remove the largest edge in the tree.
The connected components obtained are colored in red and blue below:



128 CHAPTER 3. GRAPHS

We will interpret these connected components as clusters. We claim that clustering the
data in this way solves the above computational problem; that is, it finds the partition of
the data which maximizes the separation, δ.

Theorem 10. Let X be a set of data vectors. Let B∗ and R∗ be the connected components of the
graph obtained by deleting the largest edge from a minimum spanning tree T∗ of the distance graph
of X. Then B∗ and R∗ are maximally-separated; that is, δ(B∗, R∗) ≥ δ(B′, R′), where (B′, R′) is
any other partition of X.

In proving this theorem, we will use the following claim without proof:

Claim 8. Let ∆ be the weight of the longest edge in the minimum spanning tree T∗. Then the
separation between B and R is ∆. That is, δ(B, R) = ∆.

We now prove the theorem:

Proof. Let ∆ be the weight of the longest edge in the minimum spanning tree. Let (B′, R′)
be any partition of X. There must be an edge in T∗ which starts in B′ and ends in R′, as
otherwise T∗ would be disconnected; call this edge (u, v). By the second claim, δ(B′, R′) ≤
ω(u, v). But the length of this edge is at most ∆, since ∆ is the length of the largest edge in
T∗; that is, ω(u, v) ≤ ∆. Therefore δ(B′, R′) ≤ ∆. By the above claim, δ(B∗, R∗) = ∆, and
so δ(B′, R′) ≤ δ(B∗, R∗). Since (B′, R′) was an arbitrary partition, this shows that (B∗, R∗)
has maximal separation.
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