
DSC 40B - Discussion 01

Problem 1.

What is the time complexity of the following functions? State your answer using Θ notation.

a) `def foo(n):
 for i in range(n**2 - 2*n + 100):
 j = 0
 while j < n:
 j += 1`

Solution: $\Theta(n^3)$

b) `def foo(n):
 while n > 1:
 n /= 10
 print(n)`

Solution: $\Theta(\log n)$

c) `def foo(n):
 for i in range(n):
 for j in range(i**2): # <-- notice the bound!
 print(i + j)`

Solution: $\Theta(n^3)$

d) `def pairs(numbers):
 result = []
 for x in numbers:
 for y in numbers:
 result.append((x, y))

 return result`

Solution: $\Theta(n^2)$

e) `def foo(numbers):
 for pair in pairs(numbers):
 print(sum(pair))`

Solution: $\Theta(n^2)$

Note that the result of `pairs(numbers)` is actually only computed once, on the first iteration. On this first iteration, Python will try to produce the 0th element of `pairs(numbers)`, which it will need to compute in $\Theta(n^2)$ time. After this result is computed, subsequent executions of the for loop line will take $\Theta(1)$ time as they simply produce the next element of the precomputed result. So, this function is equivalent to:

```

def foo(numbers):
    lst = pairs(numbers) # Θ(n^2)
    for pair in lst: # Θ(n^2)
        print(sum(pair)) # Θ(1)

```

Problem 2.

Let $f(n) = \sum_{p=0}^n 3^p$. What is f in Θ notation?

Solution:

General form of a geometric sum $\sum_{p=0}^n x^p = \frac{1 - x^{n+1}}{1 - x}$.

Substituting our equation yields $\sum_{p=0}^n 3^p = \frac{1 - 3^{n+1}}{1 - 3}$.

Therefore, $f(n) = \Theta(3^n)$ after throwing out the constants.