
DSC 40B - Homework 07
Due: Wednesday, November 19

Write your solutions to the following problems by handwriting them on another piece of paper. Unless
otherwise noted by the problem’s instructions, show your work or provide some justification for your answer.
Homeworks are due via Gradescope at 11:59 p.m.

Problem 1.

In lecture, we saw that breadth-first search (BFS) can be used to find the shortest paths from a source node
to all other nodes in an unweighted graph. Our implementation of BFS returned two dictionaries: distance,
containing the shortest path distance from the source node to each node in the graph, and predecessor,
containing the BFS predecessor of each node.

Consider a breadth-first search on the graph shown below, starting with node a.

a b c d

e f g h

i

Write down the distance and predecessor dictionaries returned by BFS on this graph.

Note: you should adopt the convention that .neighbors() returns the neighbors of a node in ascending
alphabetical order.

Solution:

distance = {
'a': 0,
'b': 1,
'c': 2,
'd': 3,
'e': 1,
'f': 2,
'g': 3,
'h': 4,
'i': 2

}

predecessor = {
'a': None,
'b': 'a',
'c': 'b',
'd': 'c',
'e': 'a',
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'f': 'b',
'g': 'c',
'h': 'd',
'i': 'e'

}

Problem 2.

For the following problems, recall that (u, v) is a tree edge if node v is discovered while visiting node u
during a breadth-first or depth-first search. Assume the convention that a node’s neighbors are produced in
ascending order by label. You do not need to show your work for this problem.

a) Suppose a breadth-first search is performed on the graph below, starting at node 1. Mark every BFS
tree edge with a bold arrow emanating from the predecessor.

1 2 3

4 5 6

7 8 9

Solution:

1 2 3

4 5 6

7 8 9

b) Suppose a depth-first search is performed on the graph below, starting at node 1. Mark every DFS
tree edge with a bold arrow emanating from the predecessor.

1 2 3

4 5 6

7 8 9
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Solution:

1 2 3

4 5 6

7 8 9

c) Fill in the table below so that it contains the start and finish times of each node after a DFS is
performed on the above graph using node 1 as the source. Begin your start times with 1.

Node Start Finish

1

2

3

4

5

6

7

8

9

Solution:
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Node Start Finish

1 1 18

2 2 17

3 3 16

4 6 7

5 5 14

6 4 15

7 8 9

8 10 13

9 11 12

Problem 3.

Topologically sort the vertices of the following graph. Note that there may be multiple, equally-correct
topological sorts.

You do not need to show your work for this problem.

1 2 3

4 5 6

7 8 9

Solution: Our algorithm for producing a topological sort of the nodes is to first perform a DFS in
order to record finish times, and then to sort the nodes in order of decreasing finish time.
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If we start a DFS at node 1 and us the convention that the neighbors are produced in increasing order
of label, we will visit nodes 1, 2, 3, 5, and 9. This search didn’t visit all of the nodes of the graph, so
suppose we restart the search at node 6. This search will not move away from 6, and so we restart the
search again at node 7, visiting nodes 4 and 8. The finish times resulting from this search are

times.finish = {
1: 10,
2: 9,
3: 4,
4: 17,
5: 8,
6: 12,
7: 18,
8: 16,
9: 7

}

Ordering these by decreasing finish time, we obtain a topological sort of:

7, 4, 8, 6, 1, 2, 5, 9, 3.

Your topological sort may be different, but still correct. This may happen if you restarted the search
at different nodes than what was used above.

Programming Problem 1.

You are given a directed graph representing a tree and a dictionary value which contains a value for each
node. Define the biggest descendent value of a node u to be the largest value of any node which is a descendent
of u in the tree (for this problem, you should consider u to be a descendent of itself.

For instance, given the following tree where each node’s label is replaced by its value:

1
value: 2

2
value: 1

4
value: 8

8
value: 3

9
value: 9

5
value: 5

3
value: 4

6
value: 2

7
value: 10

The biggest descendent value for each node is:
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1
biggest: 10

2
biggest: 9

4
biggest: 9

8
biggest: 3

9
biggest: 9

5
biggest: 5

3
biggest: 10

6
biggest: 2

7
biggest: 10

In a file named biggest_descendent.py, write a function biggest_descendent(graph, root, value)
which accepts the graph, the label of the root node, and the dictionary of values and returns a dictionary
mapping each node in the graph to its biggest descendent value.

The input graph will be an instance of dsc40graph.DirectedGraph().

Example:

>>> edges = [(1, 2), (1, 3), (2, 4), (2, 5), (4, 8), (4, 9), (3, 6), (3, 7)]
>>> g = dsc40graph.DirectedGraph()
>>> for edge in edges: g.add_edge(*edge)
>>> value = {1: 2, 2: 1, 3: 4, 4: 8, 5: 5, 6: 2, 7: 10, 8:3, 9: 9}
>>> biggest_descendent(g, 1, value)
{1: 10, 2: 9, 3: 10:, 4: 9, 5: 5, 6: 2, 7: 10, 8: 3, 9: 9}

Solution: We use DFS. We don’t need to check whether a neighbor has been discovered when searching
a tree, because there are no cycles.

import dsc40graph

def biggest_descendent(graph, root, value, biggest=None):
if biggest is None:

biggest = {}

biggest[root] = value[root]

for v in graph.neighbors(root):
biggest_descendent(graph, v, value, biggest)
if biggest[v] > biggest[root]:

biggest[root] = biggest[v]

return biggest

Programming Problem 2.

Suppose we are given a weighted, undirected graph G = (V,E, ω) in which the edge weights represent
similarity; for example, the similarity between two users in a social network. Given a number λ, which we
call the level, we will say that the clusters of G are the connected components of the graph after all edges
whose weight is less than λ have been removed. There are other ways of defining the clusters of a weighted
graph, but this is one natural way.

In cluster.py, write a function cluster(graph, weights, level) which computes the clusters of a
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weighted graph. Here, graph is an instance of dsc40graph.UndirectedGraph, weights(u, v) is a function
returning the weight of edge (u, v), and level is a number representing the level at which to find the clusters.
Its return value should be a frozenset1 containing frozensets; the inner frozensets should contain the
nodes in a cluster.

Your code should not modify the graph in any way and it should not create a copy of the graph. It should
run in Θ(V + E) time.

Note that weights is a function that will be constructed by us and passed to your function; you will not
need to create it (except in your own tests).

For example, given the following graph:

a

b

d

c

1 .9

.2

.3

The output when run with a level of 0.4 should be:

>>> def weights(x, y):
... x, y = (x, y) if x < y else (y, x)
... return {("a", "b"): 1, ("b", "c"): .3, ("c", "d"): .9, ("a", "d"): .2}[(x, y)]
>>> cluster.cluster(graph, weights, 0.4)
frozenset([frozenset(['a', 'b']), frozenset(['c', 'd'])])

Note: you might see curly braces instead of square brackets in the output – that’s OK. Different versions of
Python print frozensets differently.

Solution: For this problem, we can use a modified BFS or DFS (solution is BFS) to find the connected
components or clusters while ignoring edges that are below the weight threshold. Returning elements
visited is important as scanning the status array for changes can lead to a higher runtime of Θ(V 2+E)
This approach takes Θ(V + E) time in total.

def cluster(graph, weights, level):
status = {node: 'undiscovered' for node in graph.nodes}
#list to store frozensets
lst = []
for node in graph.nodes:

if status[node] == 'undiscovered':
# These nodes were visited on one iteration of BFS
# meaning they are connected
visited = bfs(graph, node, weights, level, status)
# append these connected elements
lst.append(frozenset(visited))

return frozenset(lst)

def bfs(graph, source, weights, level, status=None):
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}
status[source] = 'pending'
pending = deque([source])

1We use frozensets here because clusters are sets, but sets cannot be elements within other sets since they are not hashable.
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# create visited array to hold changed elements
visited = []
# while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

# explore edge (u,v) only if weight is greater than level
if weights(u,v) < level:

continue

if status[v] == 'undiscovered':
status[v] = 'pending'
# append to right
pending.append(v)

status[u] = 'visited'
visited.append(u)

return visited
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