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DSC 40B
Lecture 1 : 

Intro/Review
Motivation 



❖

Mic!



❖

Hello! I’m…
Marina Langlois. 

I teach coding classes at HDSI :) and many 
of you have probably taken one, two, or 
even three classes!

Fun fact: there was a student who took 6 
(all different!) classes with me :) 



❖

Credits

● Most of the materials will be re-used from Justin Eldridge's offerings of 
this class.



❖

I might be late for class because…



❖

Class Business



❖

Syllabus

● All course materials, the syllabus, etc., can be found at 
dsc40b.com

○ 9 Labs, 8 homeworks (Due Monday + Wed)) + “super hw”

○ 2 exams (dates to be determined). Week 5 and 9.   

○ Handwritten submissions, late policy, ChatGPT policy 

○ One homework dropped, one lab dropped

○ Exam redemption 

http://dsc40b.com


❖

Participation

● This is one of the changes. 

○ I need students to teach, not empty chairs :(

○ Class Participation: 2% 

○ Discussions: 1% 



❖

https://webclicker.web.app/    
ZNSOLY

Steps:

1. Go to a link above
2. Code: ZNSOLY
3. Make sure to use your UCSD email address (i.e., @ucsd.edu)
4. Use quest/public wifi please. 
5. Answer the questions when I active the poll.
6. Do not worry if it does not work today. The first class does not count. We 

will figure it out eventually. 

https://webclicker.web.app/
http://ucsd.edu/


❖

https://webclicker.web.app/    ZNSOLY

What is your DSC30 status? :)

A: Already took it

B: Took a similar class

C: Taking it this quarter

D: Still need to take it

E: Something else

https://webclicker.web.app/


❖

Discussion on Monday?

Yes!



❖



❖

Let’s jump back to 
DSC 40A… 

Just for a bit



❖

Big picture

● In what ways can we define and represent the process of learning 
from data?

○ Learning from data: 

■ observing examples (like pictures of cats and dogs with labels, 
or past stock prices) and 

■ figuring out a pattern or model that can make predictions about 
new, unseen examples.



❖

Two questions
● In what ways can we define and represent the process of 

learning from data?

● How can we translate that representation into procedures a 
computer can execute?



❖

Example 1: Minimize Absolute Error

● Goal: summarize a collection of numbers, 𝑥1 , … , 𝑥𝑛 :
● Idea: find number 𝑀 minimizing the total absolute error: 

  



❖

Example 1: Minimize Absolute Error

● Goal: summarize a collection of numbers, 𝑥1 , … , 𝑥𝑛 :
● Idea: find number 𝑀 minimizing the total absolute error: 

  What is M? 

A:  Range

B:  Mean

C: Standard deviation

D: Median



❖

Example 1: Minimize Absolute Error

Solution: The median of 𝑥1 , … , 𝑥𝑛 .



❖

The End for 40A



❖

The End?



❖

Minimize Absolute Error

● How do we actually compute the median?



❖

Minimize Absolute Error

● How do we actually compute the median?

Using just Python, no extra libraries. Imagine DSC20 Final :) 

Please, talk to each other. 



❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle
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Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle



❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle

Time complexity? 

A:  n

B:  n log n

C: n^2

D: Did not take DSC30 yet



❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle

Time complexity? 

A:  n

B:  n log n

C: n^2

D: Did not take DSC30 yet

Is this the best (fastest) you can do?



❖

Key idea

● In this class, our work doesn’t stop once we solve the math 
problem (like you did in DSC 40A). 

● We still need to compute the answer. 

● We need an algorithm.



❖

Key idea

● In this class, our work doesn’t stop once we solve the math 
problem (like you did in DSC 40A). 

● We still need to compute the answer. 

● We need an algorithm.

● More than that, we need an implementation of that algorithm 
(that is: code).



❖

Example 2: Least Squares Regression

Years of experience

      Salary

Want: given new 
data, predict the 
salary.



❖

Example 2: Least Squares Regression

● Formulation (linear regression):
○ Find the best (hyper) plane 

fitting these points with least 
total error (sum-square 
distances).



❖

Example 2: Least Squares Regression

● Formulation (linear regression):
○ Find the best (hyper) plane 

fitting these points with least 
total error (sum-square 
distances)

● Answer:



❖

Example 2: Least Squares Regression

● Formulation (linear regression):
○ Find the best (hyper) plane 

fitting these points with least 
total error (sum-square 
distances)

● Answer:

● The END



❖

Wait...

● How do we really compute it?

● How do we ask a computer to compute it for us?

● We need an algorithm.



❖

An Algorithm?

● Let’s say we have numpy installed.

● It provides an implementation of an algorithm:
○ Solves normal equations and does regression.



❖

But …is it even good?

● How fast does it run on 1,000 points?

● How does it scale on 1,000,000 points?

● What if the feature dimension increase to 100,000?

● Can we come up with the better algorithm for this problem?



❖

Key idea

● Having an algorithm isn’t enough – we need to know about its 
performance. 

● Otherwise, it may be useless for our particular problem.



❖

Not convinced? Another example: 
Clustering
● Given a pile of data, discover similar groups. 

● Examples: 
○ Find political groups within social network data. 
○ Given data on COVID-19 symptoms, discover groups that are 

affected differently. 
○ Find the similar regions of an image (segmentation). 

● Most useful when data is high dimensional...



❖

Example: Old Faithful geyser in 
Yellowstone 



❖

Example: Old Faithful in action

https://docs.google.com/file/d/1W-jKykU9E8cYTlWTAo2tkohwDprzaH1l/preview


❖

What is the pattern behind its eruption?



❖

What is the pattern behind its eruption?

Interesting observation for geophysicists 



❖

Example: Old Faithful

Goal: Invent an algorithm 
that finds these clusters 
automatically.



❖

Clustering

● Goal: for computer to identify the two groups in the data. 

● A clustering is an assignment of a color to each data point. 

● There are many possible clusterings.



❖

Clustering

● How do we turn this into something a computer can do? 

● DSC 40A says: “Turn it into an optimization problem”. 

● Idea: design a way of quantifying the “goodness” of a clustering; 
find the best. 

○ Design a loss function. 

○ There are many possibilities, tradeoffs!



❖

Think!
What’s a good loss function for this problem? It should assign small 
loss to a good clustering.



❖

Quantifying Separation
Idea: Define the “separation” 𝛿(𝐵, 𝑅) to be the smallest distance 
between a blue point and red point.



❖

Quantifying Separation
Idea: Define the “separation” 𝛿(𝐵, 𝑅) to be the smallest distance 
between a blue point and red point.



❖

The Problem

● Given n points 

● Find: an assignment of points to clusters R and B so as to 
maximize 𝛿(𝐵, 𝑅).



❖

DSC 40A: “The End”



❖

DSC 40A: “The End”

DSC 40B: “The Beginning”



❖

The “Brute Force” Algorithm

● There are finitely-many possible clusterings.

● Algorithm: Try each possible clustering, return that with largest 
separation, 𝛿(𝐵, 𝑅). 

● This is called a brute force algorithm.



❖

Code
best_separation = -float('inf') # Python for ”infinity” 

best_clustering = None 

for clustering in all_clusterings(data): 

sep = calculate_separation(clustering) 

if sep > best_separation: 

best_separation = sep 

best_clustering = clustering 

print(best_clustering)



❖

The Algorithm

● We have an algorithm! 

● But how long will this take to run if there are 𝑛 points?

● How many clusterings of 𝑛 things are there?



❖

Exercise

How many ways are there of assigning R or B to 𝑛 points?



❖

Solution

● Two choices for each object: 2 × 2 × … × 2 = 2n

○ Small nitpick: actual color doesn’t matter, 2𝑛−1



❖

Time

● Suppose it takes at least 1 nanosecond to check a single 
clustering.
○ One billionth of a second. 
○ Time it takes for light to travel 1 foot. 

●  If there are 𝑛 points, it will take at least 2𝑛 nanoseconds to 
check all clusterings.

● This is an extremely optimistic estimate. It’s actually much 
slower, and scales with 𝑛.



❖

Time Needed



❖

Time Needed

1 millionth of a second



❖

Time Needed

1 thousandth of a 
second



❖

Time Needed



❖

Time Needed



❖

Time Needed
Check your intuition: 

A: In minutes

B: In hours

C: In days

D: In weeks

E: In years



❖

Time Needed



❖

Time Needed



❖

Time Needed



❖

Example: Old Faithful

● The Old Faithful data set has 270 points. 

● Brute force algorithm will finish in 6 × 1064 years.



❖

Algorithm Design

●  Often, most obvious algorithm is unusably slow.
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Algorithm Design

● Often, most obvious algorithm is unusably slow.

● Does this mean our problem is too hard? 

○ Direct result of our choice of loss function.



❖

Algorithm Design

● Often, most obvious algorithm is unusably slow.

● Does this mean our problem is too hard? 

○ Direct result of our choice of loss function.

● We’ll see an efficient solution by the end of the quarter.



❖

Main Idea

● Just having an algorithm isn’t enough – it must also be 
reasonably efficient. Otherwise, it might be useless for our 
particular problem.



❖

DSC 40B is about:

● Assess the efficiency of algorithms. 

● Understand why and how common algorithms work. 

● Develop faster algorithms using design strategies and data 
structures.



❖

Measuring Efficiency by 
Timing



❖

Efficiency

● Speed matters, especially with large data sets. 

● An algorithm is only useful if it runs fast enough. 

○ That depends on the size of your data set. 

● How do we measure the efficiency of code?

● How do we know if a method will be fast enough?



❖

Scenario

● You’re building a least squares regression model to predict a 
patient’s blood oxygen level. 

● You’ve trained it on 1,000 people. 

● You have a full data set of 100,000 people. 

● How long will it take? How does it scale?



❖

Example: Scaling

● Your code takes 5 seconds on 1,000 points. 

●  How long will it take on 100,000 data points? 

●  5 seconds × 100 = 500 seconds? 

● More? Less?



❖

Coming Up

● We’ll answer this in coming lectures. 

● Today: start with simpler algorithms for the mean, median.



❖

Approach #1: Timing

● How do we measure the efficiency of code? 

● Simple: time it! 

● Useful Jupyter tools: time and timeit

○ Magic functions



❖



❖

Disadvantages of Timing

1. Time depends on the computer.
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Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.



❖

Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.



❖

Do you have any questions?

Thank you!

CampusWire!


