
❖

DSC 40B
Lecture 1 :

Intro/Review
Motivation

❖

Mic!

❖

Hello! I’m…
Marina Langlois.

I teach coding classes at HDSI :) and many
of you have probably taken one, two, or
even three classes!

Fun fact: there was a student who took 6
(all different!) classes with me :)

❖

Credits

● Most of the materials will be re-used from Justin Eldridge's offerings of
this class.

❖

I might be late for class because…

❖

Class Business

❖

Syllabus

● All course materials, the syllabus, etc., can be found at
dsc40b.com

○ 9 Labs, 8 homeworks (Due Monday + Wed)) + “super hw”

○ 2 exams (dates to be determined). Week 5 and 9.

○ Handwritten submissions, late policy, ChatGPT policy

○ One homework dropped, one lab dropped

○ Exam redemption

http://dsc40b.com

❖

Participation

● This is one of the changes.

○ I need students to teach, not empty chairs :(

○ Class Participation: 2%

○ Discussions: 1%

❖

https://webclicker.web.app/
ZNSOLY

Steps:

1. Go to a link above
2. Code: ZNSOLY
3. Make sure to use your UCSD email address (i.e., @ucsd.edu)
4. Use quest/public wifi please.
5. Answer the questions when I active the poll.
6. Do not worry if it does not work today. The first class does not count. We

will figure it out eventually.

https://webclicker.web.app/
http://ucsd.edu/

❖

https://webclicker.web.app/ ZNSOLY

What is your DSC30 status? :)

A: Already took it

B: Took a similar class

C: Taking it this quarter

D: Still need to take it

E: Something else

https://webclicker.web.app/

❖

Discussion on Monday?

Yes!

❖

❖

Let’s jump back to
DSC 40A…

Just for a bit

❖

Big picture

● In what ways can we define and represent the process of learning
from data?

○ Learning from data:

■ observing examples (like pictures of cats and dogs with labels,
or past stock prices) and

■ figuring out a pattern or model that can make predictions about
new, unseen examples.

❖

Two questions
● In what ways can we define and represent the process of

learning from data?

● How can we translate that representation into procedures a
computer can execute?

❖

Example 1: Minimize Absolute Error

● Goal: summarize a collection of numbers, 𝑥1 , … , 𝑥𝑛 :
● Idea: find number 𝑀 minimizing the total absolute error:

❖

Example 1: Minimize Absolute Error

● Goal: summarize a collection of numbers, 𝑥1 , … , 𝑥𝑛 :
● Idea: find number 𝑀 minimizing the total absolute error:

 What is M?

A: Range

B: Mean

C: Standard deviation

D: Median

❖

Example 1: Minimize Absolute Error

Solution: The median of 𝑥1 , … , 𝑥𝑛 .

❖

The End for 40A

❖

The End?

❖

Minimize Absolute Error

● How do we actually compute the median?

❖

Minimize Absolute Error

● How do we actually compute the median?

Using just Python, no extra libraries. Imagine DSC20 Final :)

Please, talk to each other.

❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle

❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle

❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle

Time complexity?

A: n

B: n log n

C: n^2

D: Did not take DSC30 yet

❖

Minimize Absolute Error

● How do we actually compute the median?

1) Sort
2) Find the middle

Time complexity?

A: n

B: n log n

C: n^2

D: Did not take DSC30 yet

Is this the best (fastest) you can do?

❖

Key idea

● In this class, our work doesn’t stop once we solve the math
problem (like you did in DSC 40A).

● We still need to compute the answer.

● We need an algorithm.

❖

Key idea

● In this class, our work doesn’t stop once we solve the math
problem (like you did in DSC 40A).

● We still need to compute the answer.

● We need an algorithm.

● More than that, we need an implementation of that algorithm
(that is: code).

❖

Example 2: Least Squares Regression

Years of experience

 Salary

Want: given new
data, predict the
salary.

❖

Example 2: Least Squares Regression

● Formulation (linear regression):
○ Find the best (hyper) plane

fitting these points with least
total error (sum-square
distances).

❖

Example 2: Least Squares Regression

● Formulation (linear regression):
○ Find the best (hyper) plane

fitting these points with least
total error (sum-square
distances)

● Answer:

❖

Example 2: Least Squares Regression

● Formulation (linear regression):
○ Find the best (hyper) plane

fitting these points with least
total error (sum-square
distances)

● Answer:

● The END

❖

Wait...

● How do we really compute it?

● How do we ask a computer to compute it for us?

● We need an algorithm.

❖

An Algorithm?

● Let’s say we have numpy installed.

● It provides an implementation of an algorithm:
○ Solves normal equations and does regression.

❖

But …is it even good?

● How fast does it run on 1,000 points?

● How does it scale on 1,000,000 points?

● What if the feature dimension increase to 100,000?

● Can we come up with the better algorithm for this problem?

❖

Key idea

● Having an algorithm isn’t enough – we need to know about its
performance.

● Otherwise, it may be useless for our particular problem.

❖

Not convinced? Another example:
Clustering
● Given a pile of data, discover similar groups.

● Examples:
○ Find political groups within social network data.
○ Given data on COVID-19 symptoms, discover groups that are

affected differently.
○ Find the similar regions of an image (segmentation).

● Most useful when data is high dimensional...

❖

Example: Old Faithful geyser in
Yellowstone

❖

Example: Old Faithful in action

https://docs.google.com/file/d/1W-jKykU9E8cYTlWTAo2tkohwDprzaH1l/preview

❖

What is the pattern behind its eruption?

❖

What is the pattern behind its eruption?

Interesting observation for geophysicists

❖

Example: Old Faithful

Goal: Invent an algorithm
that finds these clusters
automatically.

❖

Clustering

● Goal: for computer to identify the two groups in the data.

● A clustering is an assignment of a color to each data point.

● There are many possible clusterings.

❖

Clustering

● How do we turn this into something a computer can do?

● DSC 40A says: “Turn it into an optimization problem”.

● Idea: design a way of quantifying the “goodness” of a clustering;
find the best.

○ Design a loss function.

○ There are many possibilities, tradeoffs!

❖

Think!
What’s a good loss function for this problem? It should assign small
loss to a good clustering.

❖

Quantifying Separation
Idea: Define the “separation” 𝛿(𝐵, 𝑅) to be the smallest distance
between a blue point and red point.

❖

Quantifying Separation
Idea: Define the “separation” 𝛿(𝐵, 𝑅) to be the smallest distance
between a blue point and red point.

❖

The Problem

● Given n points

● Find: an assignment of points to clusters R and B so as to
maximize 𝛿(𝐵, 𝑅).

❖

DSC 40A: “The End”

❖

DSC 40A: “The End”

DSC 40B: “The Beginning”

❖

The “Brute Force” Algorithm

● There are finitely-many possible clusterings.

● Algorithm: Try each possible clustering, return that with largest
separation, 𝛿(𝐵, 𝑅).

● This is called a brute force algorithm.

❖

Code
best_separation = -float('inf') # Python for ”infinity”

best_clustering = None

for clustering in all_clusterings(data):

sep = calculate_separation(clustering)

if sep > best_separation:

best_separation = sep

best_clustering = clustering

print(best_clustering)

❖

The Algorithm

● We have an algorithm!

● But how long will this take to run if there are 𝑛 points?

● How many clusterings of 𝑛 things are there?

❖

Exercise

How many ways are there of assigning R or B to 𝑛 points?

❖

Solution

● Two choices for each object: 2 × 2 × … × 2 = 2n

○ Small nitpick: actual color doesn’t matter, 2𝑛−1

❖

Time

● Suppose it takes at least 1 nanosecond to check a single
clustering.
○ One billionth of a second.
○ Time it takes for light to travel 1 foot.

● If there are 𝑛 points, it will take at least 2𝑛 nanoseconds to
check all clusterings.

● This is an extremely optimistic estimate. It’s actually much
slower, and scales with 𝑛.

❖

Time Needed

❖

Time Needed

1 millionth of a second

❖

Time Needed

1 thousandth of a
second

❖

Time Needed

❖

Time Needed

❖

Time Needed
Check your intuition:

A: In minutes

B: In hours

C: In days

D: In weeks

E: In years

❖

Time Needed

❖

Time Needed

❖

Time Needed

❖

Example: Old Faithful

● The Old Faithful data set has 270 points.

● Brute force algorithm will finish in 6 × 1064 years.

❖

Algorithm Design

● Often, most obvious algorithm is unusably slow.

❖

Algorithm Design

● Often, most obvious algorithm is unusably slow.

● Does this mean our problem is too hard?

○ Direct result of our choice of loss function.

❖

Algorithm Design

● Often, most obvious algorithm is unusably slow.

● Does this mean our problem is too hard?

○ Direct result of our choice of loss function.

● We’ll see an efficient solution by the end of the quarter.

❖

Main Idea

● Just having an algorithm isn’t enough – it must also be
reasonably efficient. Otherwise, it might be useless for our
particular problem.

❖

DSC 40B is about:

● Assess the efficiency of algorithms.

● Understand why and how common algorithms work.

● Develop faster algorithms using design strategies and data
structures.

❖

Measuring Efficiency by
Timing

❖

Efficiency

● Speed matters, especially with large data sets.

● An algorithm is only useful if it runs fast enough.

○ That depends on the size of your data set.

● How do we measure the efficiency of code?

● How do we know if a method will be fast enough?

❖

Scenario

● You’re building a least squares regression model to predict a
patient’s blood oxygen level.

● You’ve trained it on 1,000 people.

● You have a full data set of 100,000 people.

● How long will it take? How does it scale?

❖

Example: Scaling

● Your code takes 5 seconds on 1,000 points.

● How long will it take on 100,000 data points?

● 5 seconds × 100 = 500 seconds?

● More? Less?

❖

Coming Up

● We’ll answer this in coming lectures.

● Today: start with simpler algorithms for the mean, median.

❖

Approach #1: Timing

● How do we measure the efficiency of code?

● Simple: time it!

● Useful Jupyter tools: time and timeit

○ Magic functions

❖

❖

Disadvantages of Timing

1. Time depends on the computer.

❖

Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.

❖

Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.

❖

Do you have any questions?

Thank you!

CampusWire!

