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Loop
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Mic!
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Announcements
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Announcements

● Lab01 is posted on Gradescope. 
○ Due Monday, 11:59pm on Gradescope

● Homework 1 is posted on DSC40b.com
○ Due Wed, 11:59pm on Gradescope
○ Hand-written, submit pdf

● First discussion is today at 4pm, same room

http://dsc40b.com


❖

https://webclicker.web.app/    
ZNSOLY

Steps:

1. Go to a link above
2. Code: ZNSOLY
3. Make sure to use your UCSD email address (i.e., @ucsd.edu)
4. Use quest/public wifi please. 
5. Answer the questions when I active the poll.
6. Do not worry if it does not work today. The first class does not count. We 

will figure it out eventually. 

https://webclicker.web.app/
http://ucsd.edu/


❖

Measuring Efficiency by 
Timing



❖

Efficiency

● Speed matters, especially with large data sets. 

● An algorithm is only useful if it runs fast enough. 

○ That depends on the size of your data set. 

● How do we measure the efficiency of code?

● How do we know if a method will be fast enough?



❖

Scenario

● You’re building a least squares regression model to predict a 
patient’s blood oxygen level. 

● You’ve trained it on 1,000 people. 

● You have a full data set of 100,000 people. 

● How long will it take? How does it scale?
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Example: Scaling

● Your code takes 5 seconds on 1,000 points. 

●  How long will it take on 100,000 data points? 

●  5 seconds × 100 = 500 seconds? 

● More? Less?
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Coming Up

● We’ll answer this in coming lectures. 

● Today: start with simpler algorithms for the mean, median.



❖

Approach #1: Timing

● How do we measure the efficiency of code? 

● Simple: time it! 

● Useful Jupyter tools: time and timeit

○ Magic functions



❖
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Disadvantages of Timing

1. Time depends on the computer.



❖

Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.
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Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.
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Measuring Efficiency by 
Counting Operations
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Approach #2: Time Complexity Analysis

● Determine efficiency of code without running it. 

● Idea: find a formula for time taken as a function of input size.



❖

Advantages of Time Complexity

1. Doesn’t depend on the computer. 

2. Reveals which inputs are “hard”, which are “easy”. 

3. Tells us how algorithm scales.
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Exercise

Write a function mean which takes in a NumPy array of floats and 
outputs their mean (without a built-in function).
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Solution

def mean(numbers):

total = 0

n = len(numbers)

for x in numbers:

total += x

return total / n



❖

Time Complexity Analysis

● How long does it take mean to run on an array of size 𝑛? 
○ Call this 𝑇(𝑛). 

●  We want a formula for 𝑇(𝑛).
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Counting Basic Operations

● Assume certain basic operations (like adding two numbers) take a 
constant amount of time. 
○  x + y doesn’t take more time if numbers is bigger. 
○  So x + y takes “constant time” 
○  Compare to sum(numbers). Not a basic operation. 

●  Idea: Count the number of basic operations. This is a measure of 
time.



❖

Exercise

● What is the complexity for each operation? 

○ accessing an element: arr[i] 

○ asking for the length: len(arr) 

○ finding the max: max(arr)
A:  O(1)

B:  O(log  n)

C:  O(n)

D: Something else



❖

Exercise

● What is the complexity for each operation? 

○ accessing an element: arr[i]  -> Constant 

○ asking for the length: len(arr) -> Constant

○ finding the max: max(arr)     -> Linear



❖

Basic Operations with Arrays

● We’ll assume that these operations on NumPy arrays take 
constant time.

○ accessing an element: arr[i] 

○ asking for the length: len(arr)



❖

Example
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Example

       C1
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Example

       C1          1

      ?
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Example

       C1          1

     C2            ?
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Example

       C1          1

     C2            1

    ?
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Example

       C1          1

     C2            1

    ?
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Example

       C1          1

     C2            1

    C5
       ?
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Example

       C1          1

     C2            1

    C5        1

     ?
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Example

       C1          1

     C2            1

    C5        1

     C4
   ?
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Example

       C1          1

     C2            1

    C5        1

     C4    n

   ?
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Example

       C1          1

     C2            1

    C5        1

     C4    n

  C3    ?
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Example

       C1          1

     C2            1

    C5        1

     C4    n

  C3  n+1



❖

Example

       C1          1

     C2            1

    C5        1

     C4    n

  C3  n+1

 T(n) = C1 + C2+ C5 + n C4 + (n+1) C3
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Example: mean

● Total time: 

𝑇 (𝑛) = 𝑐3 (𝑛 + 1) + 𝑐4𝑛 + (𝑐1 + 𝑐2 + 𝑐5 ) 

         = (𝑐3 + 𝑐4 )𝑛 + (𝑐1 + 𝑐2 + 𝑐3+ 𝑐5)

● “Forgetting” constants, lower-order terms with “Big-Theta”: 𝑇 (𝑛) = Θ(𝑛).

● Θ(𝑛) is the time complexity of the algorithm.
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Main Idea

Forgetting constant, lower order terms allows us to focus on 
how the algorithm scales, independent of which computer we 
run it on.



❖

Careful!

Not always the case that a single line of code takes constant time 
per execution!



❖

Example

        ?                            ?
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Example

        𝑐3                            1
?                          ?
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Example

        𝑐3                           1
𝑐2                           1

  ?                          ?



❖

Example

        𝑐3                              1
𝑐2                              1

𝑐1 n                           1



❖

Example: mean_2

● Total time: 

              𝑇 (𝑛) = 𝑐1𝑛 + ( 𝑐2 + 𝑐3 ) 

● “Forgetting” constants, lower-order terms with “Big-Theta”: 

             𝑇 (𝑛) = Θ(𝑛).



❖

Exercise

● Write an algorithm for finding the maximum of an array of 𝑛 
numbers. 

● What is its time complexity?



❖
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    𝑐1                  1



❖

    𝑐1                  1
 𝑐2                  n +1

   ?                           ?



❖

    𝑐1                  1
 𝑐2                  n +1

   𝑐3                  1
                           

     ?                             ?



❖

    𝑐1                  1
 𝑐2                  n +1

     𝑐3                   1
                           

     𝑐4                  n
                               ?                          ?



❖

    𝑐1                  1
 𝑐2                  n +1

     𝑐3                   1
                           

     𝑐4                  n
                              𝑐5                        ? 



❖

    𝑐1                  1
 𝑐2                  n +1

     𝑐3                   1
                           

     𝑐4                  n
                              𝑐5                        <= n



❖

    𝑐1                  1
 𝑐2                  n +1

     𝑐3                   1
                           

     𝑐4                  n
                              𝑐5                        <= n

             𝑇 (𝑛) = Θ(𝑛).
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Main Idea

Using Big-Theta allows us not to worry about exactly how 
many times each line runs.



❖

Remaining Questions

● What if the code is more complex? 
○ For example, nested loops. 

● What is this notation anyways?
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Analyzing nested loops
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Nested Loops. Example 1: Interview 
Problem

Given the diameters of n snowballs, what is the tallest 
snowman you can make using exactly two snowballs?



❖

Exercise
●  What is the time complexity of the brute force solution? 

●  Bonus: what is the best possible time complexity of any 
solution?

A: Constant

B: logarithmic

C: Linear

D: Quadratic

E: Something else
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The Brute Force Solution

● Loop through all possible (ordered) pairs. 
○ How many are there? 

● Check height of each. 

● Keep the best.



❖

How many ordered pairs?
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How many ordered pairs?

● N * (N - 1) = N^2 - N ~ N^2



❖

def tallest_snowman(heights):

max_height = -float('inf')

n = len(heights)

for i in range(n):

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height
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def tallest_snowman(heights):

max_height = -float('inf')               C

n = len(heights)

for i in range(n):

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height



❖

def tallest_snowman(heights):

max_height = -float('inf')               C

n = len(heights)                         C

for i in range(n):

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height
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def tallest_snowman(heights):

max_height = -float('inf')               C

n = len(heights)                         C

for i in range(n):                       C

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height



❖

def tallest_snowman(heights):

max_height = -float('inf')               C

n = len(heights)                         C

for i in range(n):                       C

for j in range(n):                   C 

if i == j:                        C

continue                      C           

height = heights[i] + heights[j]  C

if height > max_height:           C 

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C

for j in range(n):                   C 

if i == j:                        C

continue                      C           

height = heights[i] + heights[j]  C

if height > max_height:           C 

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C

continue                      C           

height = heights[i] + heights[j]  C

if height > max_height:           C 

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C                       n * n

continue                      C           

height = heights[i] + heights[j]  C

if height > max_height:           C 

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      

if height > max_height:           C 

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      n*n - n

if height > max_height:           C 

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      n*n - n

if height > max_height:           C                      n*n - n

max_height = height           C

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      n*n - n

if height > max_height:           C                      n*n - n

max_height = height           C                     <= n*n - n

return max_height                        C 



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C 

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      n*n - n

if height > max_height:           C                      n*n - n

max_height = height           C                     <= n*n - n

return max_height                        C            1



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C            ?

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      n*n - n

if height > max_height:           C                      n*n - n

max_height = height           C                     <= n*n - n

return max_height                        C            1

A: n

B: n + 1

C: n * n

D: Som.else



❖

def tallest_snowman(heights):

max_height = -float('inf')               C                        1

n = len(heights)                         C                        1

for i in range(n):                       C                       n + 1

for j in range(n):                   C           n(n+1)

if i == j:                        C                       n * n

continue                      C            n       

height = heights[i] + heights[j]  C                      n*n - n

if height > max_height:           C                      n*n - n

max_height = height           C                     <= n*n - n

return max_height                        C            1
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Time Complexity

● Time complexity of this is Θ(𝑛2 ).

● TODO: Can we do better? 

● Note: this algorithm considers each pair of snowballs twice.

●  We’ll fix that in a moment.
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First: A shortcut

● Making a table is getting tedious. 

● Usually, find a chunk that dominates time complexity; i.e., 
yields the leading term of 𝑇 (𝑛).
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A Shortcut

● Assume each line takes constant time to execute once. 

● To determine the overall time complexity: 

1. Find the line that is execute most. 

2. Count how many times it is executed.
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Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________  times.
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Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________  times.            n



❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________  times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

          n
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Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________  times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

          n

         n



❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________  times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

          n

         n

         n

    n 



❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________  times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

          n

         n

         n

    n 

n + n +....+ n = n2

  n
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Example 2: The Median

● Given: real numbers 𝑥1 , … , 𝑥𝑛 .

● Compute: ℎ minimizing the total absolute loss
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Example 2: The Median

● Solution: the median. 

● That is, a middle number. 

● But how do we actually compute a median?
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A Strategy

● Recall: one of 𝑥1 , … , 𝑥𝑛 must be a median.

● Idea: compute 𝑅(𝑥1), 𝑅(𝑥2), … , 𝑅(𝑥𝑛), return 𝑥𝑖 that gives the 
smallest result. 

● Basically a brute force approach.
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Exercise

●  What is the time complexity of this brute force approach? 

●  How long will it take to run on an input of size 10,000?



❖

def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h



❖

def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

What is the complexity for 
each line of code?
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def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

What is the complexity for 
each line of code?

What line executes the most?
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def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

What is the complexity for 
each line of code?

What line executes the most?

n2

T(n) = Θ(𝑛2 ) 



❖

The Median

● The brute force approach has Θ(𝑛2 ) time complexity. 

● TODO: Is there a better algorithm?
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The Median

● The brute force approach has Θ(𝑛2 ) time complexity. 
● TODO: Is there a better algorithm?

○ It turns out, you can find the median in linear time. 
(expected)



❖

The Median



❖

The Median



❖

Careful!
● Not every nested loop has Θ(𝑛2 ) time complexity!
● In general, if: 

○ outer loop iterates 𝑎 times; 
○  inner loop iterates 𝑏 times for each outer loop iteration

■  We are assuming here that the number of inner loop 
iterations doesn’t depend on which outer loop iteration we’re 
in! That is called a dependent nested loop.

○ then the innermost loop body is executed 𝑎 × 𝑏 times. 

for x in range(n): 
for y in range(n**2): 

print(x + y)



❖

Example 3

def foo(n):
for x in range(n):

for y in range(10):
print(x + y)

Time complexity?

A:  Constant

B:  n

C:  n log n

D: n2



❖

Example 4

def f(n):

for i in range(3*n**3 + 5*n**2 - 100):

for j in range(n**5, n**6):

print(i, j)



❖

Example 4

def f(n):

for i in range(3*n**3 + 5*n**2 - 100):

for j in range(n**5, n**6):

print(i, j)
Ans:

Θ(𝑛9 ) 



❖

Do you have any questions?

Thank you!

CampusWire!


