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Announcements

e L ab01is posted on Gradescope.

o Due Monday, 11:59pm on Gradescope
e Homework 1is posted on DSC40b.com

o Due Wed, 11:59pm on Gradescope

o Hand-written, submit pdf
e First discussion is today at 4pm, same room
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http://dsc40b.com
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https://webclicker.web.app/
ZNSOLY

Steps:

Go to a link above

Code: ZNSOLY

Make sure to use your UCSD email address (i.e., @ucsd.edu)
Use quest/public wifi please.

. . Answer the questions when | active the poll.
. Do not worry if it does not work today. The first class does not count. We

will figure it out eventually.
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https://webclicker.web.app/
http://ucsd.edu/
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=I"'. Efficiency

Speed matters, especially with large data sets.

An algorithm is only useful if it runs fast enough.
o That depends on the size of your data set.
How do we measure the efficiency of code?

How do we know if a3 method will be fast enough?
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Scenario

You're building a least squares regression model to predict a
patient’s blood oxygen level.

You've trained it on 1,000 people.
You have a full data set of 100,000 people.

How long will it take? How does it scale?
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Example: Scaling

e Your code takes 5 seconds on 1,000 points.

e How long will it take on 100,000 data points?
e 5 seconds x 100 = 500 seconds?

e More? Less?
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Coming Up

e We'll answer this in coming lectures.

e Today: start with simpler algorithms for the mean, median.
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Approach #1: Timing

e How do we measure the efficiency of code?

e Simple: time it!
e Useful Jupyter tools: time and timelit

o Magic functions
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numbers = range(1000)

%%time
sum (numbers)

CPU times: user 30 us, sys: @ ns, total: 30 pus
Wall time: 34.3 us

499500

%%timeit
sum(numbers)

9.96 ps = 3.79 ns per loop (mean % std. dev. of 7 runs, 100,000 loops each)
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1. Time depends on the computer.

Disadvantages of Timing
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Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.
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Disadvantages of Timing

1. Time depends on the computer.
2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.
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Approach #2: Time Complexity Analysis

e Determine efficiency of code without running it.

e Idea: find a formula for time taken as a function of input size.
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Advantages of Time Complexity

1. Doesn’t depend on the computer.
2. Reveals which inputs are “hard”, which are “easy”.

3. Tells us how algorithm scales.
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Exercise

Write a function mean which takes in a NumPy array of floats and
outputs their mean (without a built-in function).
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.I..) Solution

~def mean(numbers) :

total = ©

n = len(numbers)

for x in numbers:
total += x

return total / n
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Time Complexity Analysis

e How long does it take mean to run on an array of size n?
o Call this T(n).

e \We want a formula for 7(n).
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Counting Basic Operations

e Assume certain basic operations (like adding two numbers) take a
constant amount of time.
o X + y doesn’t take more time if numbers is bigger.
o So X + Yy takes "constant time”
o Compare to sum(numbers) . Not a basic operation.

e Idea: Count the number of basic operations. This is 3 measure of
time.
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Exercise

e What is the complexity for each operation?

o accessing an element: arr[i]

o asking for the length: len(arr
g g (arr) e @

o finding the max: max(arr)
B: O(log n)

C: O(n)

D: Something else
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Exercise

e What is the complexity for each operation?

o accessing an element: arr[i] -> Constant
o asking for the length: len(arr) -> Constant

o finding the max: max(arr) -> Linear
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Basic Operations with Arrays

e We'll assume that these operations on NumPy arrays take
constant time.

o accessing an element: arr[i]

o asking for the length: len(arr)
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I-’ Example

Time/exec. | # of execs.

def mean(numbers):
total = o
n = len(numbers)
for x in numbers:
total += X

I return total / n
= o
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I-’ Example

Time/exec. | # of execs.
def mean(numbers): C

1

total = o

n = len(numbers)

for x in numbers:
total += X

I return total / n
= o
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Time/exec. | # of execs.
def mean(numbers): C 1

1

total = o

n = Llen(numbers) ’

for x 1n numbers:
total += X

I return total / n
= o
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def mean(numbers): C 1
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total = o
n = len(numbers) c,
for x in numbers:

total += X

I return total / n
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def mean(numbers): C 1

1

total = o

n = len(numbers) c,

for x in numbers: )
total += X

I return total / n
= o
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n = len(numbers) c,
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.I'-’ Example

Time/exec.

L
B,

it of execs.

c

b def mean(numbers): C.
.t total = o
n = len(numbers) c,
for x 1n numbers:

total += X
return total / n
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.I'-’ Example

Time/exec.
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b def mean(numbers): C.
.t total = o
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.I'-’ Example

Time/exec.

L
B,

it of execs.

c

b def mean(numbers): C.
] total = ©
n = len(numbers) C,

for x 1n numbers: ,
total += X C

4

return total / n C

5
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.I'-’ Example

Time/exec.

L
B,

it of execs.

c

b def mean(numbers): C.
.t total = o
n = len(numbers) c,
for x 1n numbers:

C
total += X C,
return total / n C
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.I'-’ Example

Time/exec.

L
B,

it of execs.

c

b def mean(numbers): C.
.t total = o
n = len(numbers) c,
for x 1n numbers:

C
total += X C,
return total / n C
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.I.’ Example T(n)=C +C,+C.,+nC, + (n+1) C,

Time/exec. | # of execs.

def mean(numbers): C
total = o

n = len(numbers) c,

for x in numbers: C,

total += X C,

C

I return total / n
= o
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I-’ Example: mean

e Total time:

T(n)=c3(n+1)+c4n+(c1+c2+c5)

= (c3 *tc, )n + (c1 t e, t gt c5)

e “"Forgetting” constants, lower-order terms with "Big-Theta”: T (n) = O(n).

.P e O(n)is the time complexity of the algorithm.
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Main Idea

Forgetting constant, lower order terms allows us to focus on
how the algorithm scales, independent of which computer we
run it on.
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Time/exec. | # of execs.

def mean_2(numbers):
total = sum(numbers)
n = len(numbers)
return total / n
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Time/exec. | # of execs.

def mean_2(numbers):
total = sum(numbers)
n = len(numbers)
return total / n
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Time/exec.

i of execs.

def mean_2(numbers):
total = sum(numbers) ?
n = len(numbers) c

2
return total / n c

3
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Time/exec.

i of execs.

def mean_2(numbers):
total = sum(numbers) c
n = len(numbers) c,
return total / n c

1I'l
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Example: mean_2

e Total time:

T(n)=c1n+(cz+c3)

e “Forgetting” constants, lower-order terms with "Big-Theta”:

T (n) = O(n).
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Exercise

e \Write an algorithm for finding the maximum of an array of n
numbers.

e What is its time complexity?
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Time/exec.

i of execs.

def maximum(numbers):
current_max = -float('inf"')
for x in numbers:
1f X > current_max:
current_max = X
return current_max

11113199

B ————T
.............................



Time/exec.

i of execs.

def maximum(numbers):
current_max = -float('inf") C,
for x in numbers:
1f X > current_max:
current_max = X
return current_max
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Time/exec.

i of execs.

def maximum(numbers):
current_max = -float('inf") 1

for x in numbers: C

' 2
1f x > current_max:

current_max = X
return current_max

11113199

B ————T
.............................



Time/exec.

i of execs.

def maximum(numbers):
current_max = -float('inf") 1

for x in numbers: C

: 2
1f x > current_max: )

current_max = X
return current_max
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Time/exec.

i of execs.

def maximum(numbers):
current_max = -float('inf"') <
for x in numbers: c

1f X > current_max: C,
current_max = X ,

return current_max C

11113199
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Time/exec. | # of execs.

def maximum(numbers):
current_max = -float('inf"') C, 1
for x in numbers: n+1
1f X > current_max: n
current_max = X )

¢,
C4
Cs
return current_max C, 1
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Time/exec. | # of execs.

def maximum(numbers):
current_max = -float('inf"') C, 1

for x in numbers: n+1

1f X > current_max:

current_max = X

)
Ca
Cs
return current_max c,
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Time/exec. | # of execs.

def maximum(numbers):
current_max = -float('inf"') C, 1

for x in numbers: n+1

1f X > current_max:

current_max = X

)
Ca
Cs
return current_max c,
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Main Idea

Using Big-Theta allows us not to worry about exactly how
many times each line runs.
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Remaining Questions

e What if the code is more complex?
o For example, nested loops.

e \What is this notation anyways?
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.I_,
B Nested Loops. Example 1: Interview

.p Given the diameters of n snowballs, what is the tallest
snowman you can make using exactly two snowballs?
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= Exercise =
.i: ~ @ What is the time complexity of the brute force solution? .
= e Bonus: what is the best possible time complexity of any =
t solution?
= A: Constant =
. B: logarithmic .
. C: Linear .
.p D: Quadratic .
o :
=- E: Something else d..=
T T ————
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The Brute Force Solution

e Loop through all possible (ordered) pairs.
o How many are there?

e Check height of each.
e Keep the best.
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How many ordered pairs?
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"(N-1) =

How many ordered pairs?
N"2-N~N"2

e N
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def tallest_snowman(heights): .

max_height = -float('inf")
n = len(heights)
for i in range(n):
for j in range(n):
if i == j:
continue
height = heights[i] + heights[j]
if height > max_height:
max_height = height

return max_height

"l'f'!.'f"f'!"!."!'

T ————
.............................



J
Bl

Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf") C
n = len(heights)
for i in range(n):
for j in range(n):
if i == j:
continue
height = heights[i] + heights[j]
if height > max_height:
max_height = height

return max_height
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf") C
n = len(heights) C
for i in range(n):
for j in range(n):
if i == j:
continue
height = heights[i] + heights[j]
if height > max_height:
max_height = height

return max_height
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf") C
n = len(heights) C
for i in range(n): C
for j in range(n):
if 1 == j:
continue
height = heights[i] + heights[j]
if height > max_height:
max_height = height

return max_height
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf")
n = len(heights)
for i in range(n):

for j in range(n):

C
C
C
C
if 1 == j: C
continue C
height = heights[i] + heights[j] C
if height > max_height: C
max_height = height C

C

return max_height
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i of execs

def tallest_snowman(heights):
max_height = -float('inf")
n = len(heights)
for i in range(n):
for j in range(n):
if i == j:
continue
height = heights[i] + heights[j]
if height > max_height:
max_height = height

return max_height
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def tallest_snowman(heights):
max_height = -float('inf")
n = len(heights)
for i in range(n):
for j in range(n):
if i == j:
continue
height = heights[i] + heights[j]
if height > max_height:
max_height = height

return max_height
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf")
n = len(heights)
for i in range(n):

for j in range(n):

C
C
C
C
if 1 == j: C
continue C
height = heights[i] + heights[j] C
if height > max_height: C
max_height = height C

C

return max_height
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf")
n = len(heights)
for i in range(n):

for j in range(n):

C
C
C
C
if 1 == j: C
continue C
height = heights[i] + heights[j] C
if height > max_height: C
max_height = height C

C

return max_height
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continue C
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max_height = height C

C

return max_height
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max_height = height C
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return max_height

"l'f‘l'f"f'!"!."!'

T ————
.............................



J
Bl

Tlmelexec i of execs =
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continue C
height = heights[i] + heights[j] C
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max_height = height C
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def tallest_snowman(heights):

max_height = -float('inf")
n = len(heights)
for i in range(n):

for j in range(n):

C
C
C
C
if 1 == j: C
continue C
height = heights[i] + heights[j] C
if height > max_height: C
max_height = height C
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf") C
n = len(heights) A:n C
for i in range(n): B:n+ 1 C
for j in range(n): C:n*n C

if 1 == j: D: Som.else C
continue C

height = heights[i] + heights[j] C

if height > max_height: C
max_height = height C

C

return max_height
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Tlmelexec i of execs =
def tallest_snowman(heights):

max_height = -float('inf")
n = len(heights)
for i in range(n):

for j in range(n):

C
C
C
C
if 1 == j: C
continue C
height = heights[i] + heights[j] C
if height > max_height: C
max_height = height C

C

return max_height
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Time Complexity

e Time complexity of this is ©(n? ).

e TODO: Can we do better?
e Note: this algorithm considers each pair of snowballs twice.

e We'll fix that in a3 moment.
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First: A shortcut

e Making a table is getting tedious.

e Usually, find a chunk that dominates time complexity; i.e.,
yields the leading term of T (n).
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A Shortcut

e Assume each line takes constant time to execute once.
e To determine the overall time complexity:

1. Find the line that is execute most.

2. Count how many times it is executed.
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=I..) Shortcut for the Brute Force Solution

for i in range(n):
for j in range(n):
height = heights[i] + heights[j] # <- count execs.

e On outeriter. # 1, inner body runs times.

o
< =8
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=I..) Shortcut for the Brute Force Solution

for i in range(n):
for j in range(n):
height = heights[i] + heights[j] # <- count execs.

e On outeriter. # 1, inner body runs 3 times.

o
< =8
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=I..) Shortcut for the Brute Force Solution

for i in range(n):
for j in range(n):
height = heights[i] + heights[j] # <- count execs.

On outer iter. # 1, inner body runs n times.

On outer iter. # 2, inner body runs times.

. On outer iter. # a, inner body runs times.
The outer loop runs times.

Total number of executions:
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=I..) Shortcut for the Brute Force Solution

for i in range(n):
for j in range(n):
height = heights[i] + heights[j] # <- count execs.

On outer iter. # 1, inner body runs n times.

On outer iter. # 2, inner body runs n times.

. On outer iter. # a, inner body runs times.
The outer loop runs times.

Total number of executions:
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=I..) Shortcut for the Brute Force Solution

for i in range(n):
for j in range(n):
height = heights[i] + heights[j] # <- count execs.

On outer iter. # 1, inner body runs n times.

On outer iter. # 2, inner body runs n times.

. On outer iter. # a, inner body runs n times.
The outer loop runs n times.

Total number of executions:

B ————T
.............................




NN
——— =aEE
.

Shortcut for the Brute Force Solution

for i in range(n):
for j in range(n):
height = heights[i] + heights[j] # <- count execs.

On outer iter. # 1, inner body runs times.

On outer iter. # 2, inner body runs times.

On outer iter. # «, inner body runs times.

The outer loop runs n times.

Total number of executions: _N + N +....+ N = n?

_

~

n

1999999499
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Example 2: The Median

e Given: real numbers Xy s X

e Compute: h minimizing the total absolute loss

R(h) = > Ix; - h
=1
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Example 2: The Median

e Solution: the median.

e Thatis, a middle number.

e But how do we actually compute a median?
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A Strategy

e Recall: one of Xy 0 X must be a8 median.

e Idea: compute R(x 1), R(x,), ..., R(x ), return x, that gives the
smallest result.

R(h)=> |x;- hl
i=1

Basically a brute force approach.

="’ =8
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Exercise

e What is the time complexity of this brute force approach?

e How long will it take to run on an input of size 10,0007
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def median(numbers):

min_h = None
min_value = float('inf"')
for h in numbers:
total_abs_loss = 0
for x in numbers:
total_abs_loss += abs(x - h)
if total_abs_loss < min_value:
min_value = total_abs_loss
min_h = h

return min_h
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def median(numbers):

min_h = None What is the complexity for
min_value = float('inf"') each line of code?
for h in numbers:
total_abs_loss = 0
for x in numbers:
total_abs_loss += abs(x - h)
if total_abs_loss < min_value:
min_value = total_abs_loss
min_h = h

return min_h
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def median(numbers):

min_h = None What is the complexity for

min_value = float('inf"') each line of code?
for h in numbers:
What line executes the most?
total_abs_loss = 0
for x in numbers:
total_abs_loss += abs(x - h)
if total_abs_loss < min_value:
min_value = total_abs_loss

min_h = h

return min_h
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def median(numbers):

min_h = None What is the complexity for

min_value = float('inf"') each line of code?

for h in numbers:

What line executes the most?
total_abs_loss = 0

for x in numbers:
total_abs_loss += abs(x - h) — 2
if total_abs_loss < min_value:

'!."C"C'!"L"!'

min_value = total_abs_loss

C

in_h = h
- T(n) = O(n?)

return min_h

c
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The Median

e The brute force approach has O(n? ) time complexity.

e TODO: Is there a better algorithm?
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The Median

e The brute force approach has O(n? ) time complexity.
e TODO: Is there a better algorithm?
o It turns out, you can find the median in linear time.
(expected)
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The Median

numbers = list(range(10000))

Pstime median(numbers)

CPU times: user 4.55 s, sys: @ ns, total: 4.55 s
Wall time: 4.55 s

4999
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=I-—' The Median

numbers = list(range(10000))

Pstime median(numbers)

CPU times: user 4.55 s, sys: @ ns, total: 4.55 s
Wall time: 4.55 s

4999

=P %time magic_median(numbers)

CPU times: user 5.42 ms, sys: 22 us, total: 5.44 ms

.P Wall time: 5.04 ms
= L
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Carefull!

e Not every nested loop has O(n?) time complexity!
e In general, if:
o outer loop iterates a times;
o inner loop iterates b times for each outer loop iteration
m We are assuming here that the number of inner loop
iterations doesn’t depend on which outer loop iteration we're
in! That is called a dependent nested loop.
o then the innermost loop body is executed a x b times.

'!."C"C'!"L"!'

for x in range(n):

C

for y in range(n**2):
print(x + vy)

c
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Example 3

Time complexity?
def foo(n):
for x in range(n): A: Constant
for y in range(10):
print(x + vy) B: n

C: nlogn

D: n?
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= Example 4 =
B | L
. def f(n) . .
. for i in range(3*n**3 + 5*n**2 - 100): .
. for j in range(n**5, n**6): .
=P print(i, j) =
O B
¥ -
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Example 4

def f(n):
for i in range(3*n**3 + 5*n**2 - 100):
for j in range(n**5, n**6):

print(i, j)

11113999

T ————
.............................



---------------------------

Thank you!
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