
❖

DSC 40B
Lecture 2 : Timing,

Counting
Operations, Nested

Loop

❖

Mic!

❖

Announcements

❖

Announcements

● Lab01 is posted on Gradescope.
○ Due Monday, 11:59pm on Gradescope

● Homework 1 is posted on DSC40b.com
○ Due Wed, 11:59pm on Gradescope
○ Hand-written, submit pdf

● First discussion is today at 4pm, same room

http://dsc40b.com

❖

https://webclicker.web.app/
ZNSOLY

Steps:

1. Go to a link above
2. Code: ZNSOLY
3. Make sure to use your UCSD email address (i.e., @ucsd.edu)
4. Use quest/public wifi please.
5. Answer the questions when I active the poll.
6. Do not worry if it does not work today. The first class does not count. We

will figure it out eventually.

https://webclicker.web.app/
http://ucsd.edu/

❖

Measuring Efficiency by
Timing

❖

Efficiency

● Speed matters, especially with large data sets.

● An algorithm is only useful if it runs fast enough.

○ That depends on the size of your data set.

● How do we measure the efficiency of code?

● How do we know if a method will be fast enough?

❖

Scenario

● You’re building a least squares regression model to predict a
patient’s blood oxygen level.

● You’ve trained it on 1,000 people.

● You have a full data set of 100,000 people.

● How long will it take? How does it scale?

❖

Example: Scaling

● Your code takes 5 seconds on 1,000 points.

● How long will it take on 100,000 data points?

● 5 seconds × 100 = 500 seconds?

● More? Less?

❖

Coming Up

● We’ll answer this in coming lectures.

● Today: start with simpler algorithms for the mean, median.

❖

Approach #1: Timing

● How do we measure the efficiency of code?

● Simple: time it!

● Useful Jupyter tools: time and timeit

○ Magic functions

❖

❖

Disadvantages of Timing

1. Time depends on the computer.

❖

Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.

❖

Disadvantages of Timing

1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.

❖

Measuring Efficiency by
Counting Operations

❖

Approach #2: Time Complexity Analysis

● Determine efficiency of code without running it.

● Idea: find a formula for time taken as a function of input size.

❖

Advantages of Time Complexity

1. Doesn’t depend on the computer.

2. Reveals which inputs are “hard”, which are “easy”.

3. Tells us how algorithm scales.

❖

Exercise

Write a function mean which takes in a NumPy array of floats and
outputs their mean (without a built-in function).

❖

Solution

def mean(numbers):

total = 0

n = len(numbers)

for x in numbers:

total += x

return total / n

❖

Time Complexity Analysis

● How long does it take mean to run on an array of size 𝑛?
○ Call this 𝑇(𝑛).

● We want a formula for 𝑇(𝑛).

❖

Counting Basic Operations

● Assume certain basic operations (like adding two numbers) take a
constant amount of time.
○ x + y doesn’t take more time if numbers is bigger.
○ So x + y takes “constant time”
○ Compare to sum(numbers). Not a basic operation.

● Idea: Count the number of basic operations. This is a measure of
time.

❖

Exercise

● What is the complexity for each operation?

○ accessing an element: arr[i]

○ asking for the length: len(arr)

○ finding the max: max(arr)
A: O(1)

B: O(log n)

C: O(n)

D: Something else

❖

Exercise

● What is the complexity for each operation?

○ accessing an element: arr[i] -> Constant

○ asking for the length: len(arr) -> Constant

○ finding the max: max(arr) -> Linear

❖

Basic Operations with Arrays

● We’ll assume that these operations on NumPy arrays take
constant time.

○ accessing an element: arr[i]

○ asking for the length: len(arr)

❖

Example

❖

Example

 C1

❖

Example

 C1 1

 ?

❖

Example

 C1 1

 C2 ?

❖

Example

 C1 1

 C2 1

 ?

❖

Example

 C1 1

 C2 1

 ?

❖

Example

 C1 1

 C2 1

 C5
 ?

❖

Example

 C1 1

 C2 1

 C5 1

 ?

❖

Example

 C1 1

 C2 1

 C5 1

 C4
 ?

❖

Example

 C1 1

 C2 1

 C5 1

 C4 n

 ?

❖

Example

 C1 1

 C2 1

 C5 1

 C4 n

 C3 ?

❖

Example

 C1 1

 C2 1

 C5 1

 C4 n

 C3 n+1

❖

Example

 C1 1

 C2 1

 C5 1

 C4 n

 C3 n+1

 T(n) = C1 + C2+ C5 + n C4 + (n+1) C3

❖

Example: mean

● Total time:

𝑇 (𝑛) = 𝑐3 (𝑛 + 1) + 𝑐4𝑛 + (𝑐1 + 𝑐2 + 𝑐5)

 = (𝑐3 + 𝑐4)𝑛 + (𝑐1 + 𝑐2 + 𝑐3+ 𝑐5)

● “Forgetting” constants, lower-order terms with “Big-Theta”: 𝑇 (𝑛) = Θ(𝑛).

● Θ(𝑛) is the time complexity of the algorithm.

❖

Main Idea

Forgetting constant, lower order terms allows us to focus on
how the algorithm scales, independent of which computer we
run it on.

❖

Careful!

Not always the case that a single line of code takes constant time
per execution!

❖

Example

 ? ?

❖

Example

 𝑐3 1
? ?

❖

Example

 𝑐3 1
𝑐2 1

 ? ?

❖

Example

 𝑐3 1
𝑐2 1

𝑐1 n 1

❖

Example: mean_2

● Total time:

 𝑇 (𝑛) = 𝑐1𝑛 + (𝑐2 + 𝑐3)

● “Forgetting” constants, lower-order terms with “Big-Theta”:

 𝑇 (𝑛) = Θ(𝑛).

❖

Exercise

● Write an algorithm for finding the maximum of an array of 𝑛
numbers.

● What is its time complexity?

❖

❖

 𝑐1 1

❖

 𝑐1 1
 𝑐2 n +1

 ? ?

❖

 𝑐1 1
 𝑐2 n +1

 𝑐3 1

 ? ?

❖

 𝑐1 1
 𝑐2 n +1

 𝑐3 1

 𝑐4 n
 ? ?

❖

 𝑐1 1
 𝑐2 n +1

 𝑐3 1

 𝑐4 n
 𝑐5 ?

❖

 𝑐1 1
 𝑐2 n +1

 𝑐3 1

 𝑐4 n
 𝑐5 <= n

❖

 𝑐1 1
 𝑐2 n +1

 𝑐3 1

 𝑐4 n
 𝑐5 <= n

 𝑇 (𝑛) = Θ(𝑛).

❖

Main Idea

Using Big-Theta allows us not to worry about exactly how
many times each line runs.

❖

Remaining Questions

● What if the code is more complex?
○ For example, nested loops.

● What is this notation anyways?

❖

Analyzing nested loops

❖

Nested Loops. Example 1: Interview
Problem

Given the diameters of n snowballs, what is the tallest
snowman you can make using exactly two snowballs?

❖

Exercise
● What is the time complexity of the brute force solution?

● Bonus: what is the best possible time complexity of any
solution?

A: Constant

B: logarithmic

C: Linear

D: Quadratic

E: Something else

❖

The Brute Force Solution

● Loop through all possible (ordered) pairs.
○ How many are there?

● Check height of each.

● Keep the best.

❖

How many ordered pairs?

❖

How many ordered pairs?

● N * (N - 1) = N^2 - N ~ N^2

❖

def tallest_snowman(heights):

max_height = -float('inf')

n = len(heights)

for i in range(n):

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height

❖

def tallest_snowman(heights):

max_height = -float('inf') C

n = len(heights)

for i in range(n):

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height

❖

def tallest_snowman(heights):

max_height = -float('inf') C

n = len(heights) C

for i in range(n):

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height

❖

def tallest_snowman(heights):

max_height = -float('inf') C

n = len(heights) C

for i in range(n): C

for j in range(n):

if i == j:

continue

height = heights[i] + heights[j]

if height > max_height:

max_height = height

return max_height

❖

def tallest_snowman(heights):

max_height = -float('inf') C

n = len(heights) C

for i in range(n): C

for j in range(n): C

if i == j: C

continue C

height = heights[i] + heights[j] C

if height > max_height: C

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C

for j in range(n): C

if i == j: C

continue C

height = heights[i] + heights[j] C

if height > max_height: C

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C

continue C

height = heights[i] + heights[j] C

if height > max_height: C

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C n * n

continue C

height = heights[i] + heights[j] C

if height > max_height: C

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C

if height > max_height: C

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C n*n - n

if height > max_height: C

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C n*n - n

if height > max_height: C n*n - n

max_height = height C

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C n*n - n

if height > max_height: C n*n - n

max_height = height C <= n*n - n

return max_height C

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C n*n - n

if height > max_height: C n*n - n

max_height = height C <= n*n - n

return max_height C 1

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C ?

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C n*n - n

if height > max_height: C n*n - n

max_height = height C <= n*n - n

return max_height C 1

A: n

B: n + 1

C: n * n

D: Som.else

❖

def tallest_snowman(heights):

max_height = -float('inf') C 1

n = len(heights) C 1

for i in range(n): C n + 1

for j in range(n): C n(n+1)

if i == j: C n * n

continue C n

height = heights[i] + heights[j] C n*n - n

if height > max_height: C n*n - n

max_height = height C <= n*n - n

return max_height C 1

❖

Time Complexity

● Time complexity of this is Θ(𝑛2).

● TODO: Can we do better?

● Note: this algorithm considers each pair of snowballs twice.

● We’ll fix that in a moment.

❖

First: A shortcut

● Making a table is getting tedious.

● Usually, find a chunk that dominates time complexity; i.e.,
yields the leading term of 𝑇 (𝑛).

❖

A Shortcut

● Assume each line takes constant time to execute once.

● To determine the overall time complexity:

1. Find the line that is execute most.

2. Count how many times it is executed.

❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________ times.

❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________ times. n

❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________ times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

 n

❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________ times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

 n

 n

❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________ times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

 n

 n

 n

 n

❖

Shortcut for the Brute Force Solution

● On outer iter. # 1, inner body runs _________________ times.

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

● Total number of executions: __________________

 n

 n

 n

 n

n + n +....+ n = n2

 n

❖

Example 2: The Median

● Given: real numbers 𝑥1 , … , 𝑥𝑛 .

● Compute: ℎ minimizing the total absolute loss

❖

Example 2: The Median

● Solution: the median.

● That is, a middle number.

● But how do we actually compute a median?

❖

A Strategy

● Recall: one of 𝑥1 , … , 𝑥𝑛 must be a median.

● Idea: compute 𝑅(𝑥1), 𝑅(𝑥2), … , 𝑅(𝑥𝑛), return 𝑥𝑖 that gives the
smallest result.

● Basically a brute force approach.

❖

Exercise

● What is the time complexity of this brute force approach?

● How long will it take to run on an input of size 10,000?

❖

def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

❖

def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

What is the complexity for
each line of code?

❖

def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

What is the complexity for
each line of code?

What line executes the most?

❖

def median(numbers):

min_h = None

min_value = float('inf')

for h in numbers:

total_abs_loss = 0

for x in numbers:

total_abs_loss += abs(x - h)

if total_abs_loss < min_value:

min_value = total_abs_loss

min_h = h

return min_h

What is the complexity for
each line of code?

What line executes the most?

n2

T(n) = Θ(𝑛2)

❖

The Median

● The brute force approach has Θ(𝑛2) time complexity.

● TODO: Is there a better algorithm?

❖

The Median

● The brute force approach has Θ(𝑛2) time complexity.
● TODO: Is there a better algorithm?

○ It turns out, you can find the median in linear time.
(expected)

❖

The Median

❖

The Median

❖

Careful!
● Not every nested loop has Θ(𝑛2) time complexity!
● In general, if:

○ outer loop iterates 𝑎 times;
○ inner loop iterates 𝑏 times for each outer loop iteration

■ We are assuming here that the number of inner loop
iterations doesn’t depend on which outer loop iteration we’re
in! That is called a dependent nested loop.

○ then the innermost loop body is executed 𝑎 × 𝑏 times.

for x in range(n):
for y in range(n**2):

print(x + y)

❖

Example 3

def foo(n):
for x in range(n):

for y in range(10):
print(x + y)

Time complexity?

A: Constant

B: n

C: n log n

D: n2

❖

Example 4

def f(n):

for i in range(3*n**3 + 5*n**2 - 100):

for j in range(n**5, n**6):

print(i, j)

❖

Example 4

def f(n):

for i in range(3*n**3 + 5*n**2 - 100):

for j in range(n**5, n**6):

print(i, j)
Ans:

Θ(𝑛9)

❖

Do you have any questions?

Thank you!

CampusWire!

