DSC 408
Lecture 3 : Nested

= b
C

op (dependent).

T T S ——

T R ————
-ttt

I lllllllllllllllllllllll=l=
.-

.I,_,o Carefull

e Not every nested loop has O(n?) time complexity!
e In general, if:
o outer loop iterates a times;
o inner loop iterates b times for each outer loop iteration
m We are assuming here that the number of inner loop iterations
doesn’t depend on which outer loop iteration we’re in!
o then the innermost loop body is executed a x b times.

P for x in range(n):

for y in range(n**2):

= print(x + vy)
= =

B ————T
.............................

93322290

Dependent Nested Loops
T T T T T Tt r Tt r T T T T rr T il T

==llllllllllllllllllllllll=ll

=I-’ Example 3: Tallest Snowman, Again

~ @ Qur previous algorithm for the tallest snowman computed height
for each ordered pair of people.
o i=3andj=7isthesameasi=7andj=3

Idea: consider each unordered pair only once:

for i in range(n):
for j in range(i + 1, n):

e What is the time complexity?

T ————
e

Pictorially

for i in range(s4):
for j in range(s):
print(i, j)

(0,0) (01) (0,2) (0,3)
(1,0) (11) (1,2) (1,3)
(2,00 (21) (2,2) (2,3)
(3,00 (31) (3,2) (3,3)

11113999

T ————
.............................

Pictorially

for i in range(s):
for j in range(i + 1,
ARERELT: 3)

(0,1) (0,2) (0,3)

(1,2) (1,3)
(2,3)

ceeecece

T ————
.............................

!!lllllllllllllllllllll=ll

def tallest_snowman_2(heights):
max_height = -float('inf")
n = len(heights)
~for i in range(n):
for j in range(i+1, n):
height = heights[i] + heights[j]
if height > max_height:
max_height = height
return max_height

'C"C'!"L"!'

.p e Goal: How many time does line height = heights[i] + heights[j] runin
total?

.i) e Now inner nested loop depends on nested outer loop
T
e

Independent Dependent

for i in range(n): for i in range(n):
for j in range(n): ... for j in range(i,n): ...

Inner loop doesn’t depend on Inner loop depends on outer
outer loop iteration #. loop iteration #.

e Just multiply: inner body Can’t just multiply: inner body
executed n x n = n? times. executed ??? times.

133193149

T ————
.............................

==llllllllllllllllllllllll=ll

0
b Dependent Nested Loops

. ~for i in range(n):
for j in range(i + 1, n):
height = heights[i] + heights[j]

e Idea: find formula fla) for *number of iterations of inner loop
during outer iteration "

n
e Then total: Z f(a)
a=1

T ————
e

for i in range(n):
for j in range(i + 1, n):
height = heights[i] + heights[j]

On outer iter. # 1, inner body runs ! times. (i =

On outer iter. # 2, inner body runs times.

On outer iter. # «, inner body runs times.

The outer loop runs

11113999

T ————
.............................

for i in range(n):
for j in range(1, n): #i = @
height = heights[i] + heights[j]

n-1

On outer iter. # 1, inner body runs times. (i = 0)

?
On outer iter. # 2, inner body runs : times. (i = 1)

On outer iter. # «, inner body runs times.

The outer loop runs

11113999

T ————
.............................

for i in range(n):
for j in range(2, n): #i = 1
height = heights[i] + heights[j]

n-1

On outer iter. # 1, inner body runs times. (i = 0)

n-2
On outer iter. # 2, inner body runs times. (i =1)

On outer iter. # «, inner body runs ' times. (i = a)

The outer loop runs

11113999

T ————
.............................

for i in range(n):
for j in range(a, n): #i = «
height = heights[i] + heights[j]

n-1

On outer iter. # 1, inner body runs times. (i = 0)

n-2
On outer iter. # 2, inner body runs times. (i =1)

On outer iter. # «, inner body runs _ times. (i = a)

?
The outer loop runs

11113999

T ————
.............................

for i in range(n):
for j in range(a, n): #i = «
height = heights[i] + heights[j]

n-1

On outer iter. # 1, inner body runs times. (i = 0)

n-2
On outer iter. # 2, inner body runs times. (i =1)

On outer iter. # «, inner body runs _ times. (i = a)

n
The outer loop runs

11113999

T ————
.............................

Totalling Up

e On outer iteration «, inner body runs n - a times.
o Thatis, fla) =n -«

e There are n outer iterations.

e So we need to calculate:

> @)= (n-a)

a=1 a=1

11113999

T ————
.............................

EE—-—-—-—-—-—-—-—-—-—-dIII

=l

—
~

339

(n-1) +
D — -
1st outer iter 2nd outer iter

ceecccce

T ————
e

llllll=ll

(n - 1) + (n - 2) + LE N]
1st outer iter 2nd outer iter kth outer iter

ceecccce

T ————
e

!lllllllllllllllll=ll

i(n - q)
a=1

(n-1)+ (n-2) + ..+ (n-0a) + ..+(n-(n-1)+
1st outer iter 2nd outer iter kth outer iter (n-1)th outer iter !

1999999499

T ————
.........................i...

!lllllllllllllllll=ll

i(n - Q)
a=1

1st outer iter 2nd outer iter kth outer iter (n-1)th outer iter y nth outer iter

1113111

T ————
.............................

!lllllllllllllllll=ll

i(n - Q)
a=1

1st outer iter 2nd outer iter kth outer iter (n-1)th outer iter y nth outer iter

1+2+3+..+(n-3)+(n-2)+(n-1)

1113111

T ————
.............................

!lllllllllllllllll=ll

i(n - Q)
a=1

1st outer iter 2nd outer iter kth outer iter (n-1)th outer iter y nth outer iter

1+2+3+..+(n-3)+(n-2)+(n-1)

nin-1)/2

1113111

T ————
.............................

Aside: Arithmetic Sums

e 1+2+3+ ...+ (n-1)+ nisan arithmetic sum.

e Formula for total: n(n + 1)/2.

e You should memorize it!

11113999

T ————
.............................

EE—-—-—-—-—-—-—-—-—-—--dIII

eeewE

Time Complexity

e tallest snowman 2 has @(rn?) time complexity

e 5Same as original tallest snowman

e Should we have been able to quess this? Why?

11113999

T ————
.............................

”
c
-
o

Reason 1: Number of Pairs

e \We're doing constant work for each unordered pair.

e Recall from 40A: number of pairs of n objects is

n nt _nn-1)
“Sn-2)1 2

P o S00O(n
= L

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

II.__.
D Reason 2: Half as much work

.t ~ @ Qur new solution does roughly half as much work as the old
D one.

. ' ; n?) is still ©(n?).
B

T ————
e

Main Ideas

. If the loops are dependent, you’ll usually need:

3. to write down a summation,
b. evaluate.

N

Halving the work (or thirding, quartering, etc.) doesn’t
change the time complexity.

11113999

T ————
.............................

=l

Design a linear time algorithm for this problem.

CEEREREREY

Growth Rates

T ———
..............................

==llllllllllllllllllllllll=ll

=I-’ Linear vs. Quadratic Scaling

~ T(n) = ©(n) means “T(n)
grows like n”

Time: T(n)

~ T(n) = ©(n?) means
“T(n) grows like n*”

Input Size: n

T ————
e

==llllllllllllllllllllllll=ll

=I-’ Linear vs. Quadratic Scaling

~ T(n) = ©(n) means “T(n)
grows like n”

~ T(n) = ©(n?) means
“T(n) grows like n*”

. Time: T(n)

Input Size: n

T ————
e

==llllllllllllllllllllllll=ll

=I-’ Linear vs. Quadratic Scaling

~ T(n) = ©(n) means “T(n)
grows like n”

~ T(n) = ©(n?) means
“T(n) grows like n*”

. Time: T(n)

Input Size: n

T ————
e

Definitions

1. An algorithm is said to run in linear time if T (n) = O(n).

2. An algorithm is said to run in quadratic time if T (n) = ©(n?).

11111999

T ————
.............................

Linear Growth

e |f input size doubles, time roughly doubles.

e |f code takes 5 seconds on 1,000 points...
e ..on 100,000 data points it takes = 500 seconds.

e j.e., 83 minutes

11113999

T ————
.............................

Quadratic Growth

e If input size doubles, time roughly quadruples.

e |f code takes 5 seconds on 1,000 points...
e ..on 100,000 points it takes = 50,000 seconds.

e ie. =14 hours

11113999

T ————
.............................

=lllllllllllllllllllllllll=l=
.-

In data science...

Let’s say we have a training set of 10,000 points.

If model takes quadratic time to train, should expect to wait
minutes to hours.

If model takes linear time to train, should expect to wait
seconds to minutes.

These are rules of thumb only.

= T —— T ———

'l' '!."C"C'!"L'T."

==llllllllllllllllllllllll=ll

.I.__.
B Exponential Growth

e Increasing input size by one doubles (triples, etc.) time taken.

e Grows very quickly!

Example: brute force search of 2" subsets.

. for subset in all_subsets(things):

print(subset)
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

II.__.
- Logarithmic Growth

e To increase time taken by one unit, must double (triple,
etc.) the input size.

e Grows very slowly

.I e |og n grows slower than n* for any a > O

o le., logn grows slower than n, vn, n'/1:0%

B ————T
.............................

, etc.

Exercise

What is the asymptotic time complexity of the code below as

a function of n?

A: Constant
) B: Lo

1 = 1 9
while 1 <= n: C: Linear

Lo s %
1 1 2 D: Quadratic

11113999

T ————
.............................

I lllllllllllllllllllllll=l=
.-

.I-—' Solution

~ e Same general strategy as before: “how many times does loop
body run?”

t# iters.

1 =1
.P while 1 <= n:
1 =1 % 2
= L

B ————T
.............................

OoONOOUTL S~ WN = | S

I lllllllllllllllllllllll=l=
.-

.I-—' Solution

~ e Same general strategy as before: “how many times does loop
body run?”

t# iters.

1

1 =1
.P while 1 <= n:
1 =1 % 2
= L

B ————T
.............................

OoONOOUTL S~ WN = | S

I lllllllllllllllllllllll=l=
.-

.I-—' Solution

~ e Same general strategy as before: “how many times does loop
body run?”

t# iters.

1
2

1 =1
.P while 1 <= n:
1 =1 % 2
= L

B ————T
.............................

OoONOOUTL S~ WN = | S

I lllllllllllllllllllllll=l=
.-

.I-—' Solution

~ e Same general strategy as before: “how many times does loop
body run?”

t# iters.

1
2
2

1 =1
.P while 1 <= n:
1 =1 % 2
= L

B ————T
.............................

OoONOOUTL S~ WN = | S

I lllllllllllllllllllllll=l=
.-

.I-—' Solution

~ e Same general strategy as before: “how many times does loop
body run?”

t# iters.

1 =1
.P while 1 <= n:
1 =1 % 2
= L

B ————T
.............................

OoONOOUTL S~ WN = | S

I lllllllllllllllllllllll=l=
.-

.I-—' Solution

~ e Same general strategy as before: “how many times does loop
body run?”

t# iters.

1 =1
.P while 1 <= n:
1 =1 % 2
= L

B ————T
.............................

OoONOOUTL S~ WN = | S

1
2
2
3
3
3
3
4

==llllllllllllllllllllllll=ll

II.__.
B Common Growth Rates

» ©(1): constant
» O(logn): logarithmic
» O(n): linear

» O(nlogn): linearithmic
.P » O(n?): quadratic
» 0O(n?): cubic
P | » ©(2"): exponential
= =l

B ————T
.............................

93333390

D: Impossible to tell

C: Same

e Which grows faster, n! or 2" ?

Question

Thank you!

.I CampusWire!
=l--

)

