
❖

DSC 40B
Lecture 3 : Nested 
Loop (dependent).



❖

Mic!



❖

Careful!
● Not every nested loop has Θ(𝑛2 ) time complexity!
● In general, if: 

○ outer loop iterates 𝑎 times; 
○  inner loop iterates 𝑏 times for each outer loop iteration

■ We are assuming here that the number of inner loop iterations 
doesn’t depend on which outer loop iteration we’re in! 

○ then the innermost loop body is executed 𝑎 × 𝑏 times. 

for x in range(n): 
for y in range(n**2): 

print(x + y)



❖

Dependent Nested Loops



❖

Example 3: Tallest Snowman, Again

● Our previous algorithm for the tallest snowman computed height 
for each ordered pair of people.
○  i = 3 and j = 7 is the same as i = 7 and j = 3 

●  Idea: consider each unordered pair only once: 

for i in range(n): 
       for j in range(i + 1, n): 

● What is the time complexity?



❖

Pictorially



❖

Pictorially



❖

def tallest_snowman_2(heights):
max_height = -float('inf')               
n = len(heights)
for i in range(n):

for j in range(i+1, n):
height = heights[i] + heights[j]
if height > max_height:

max_height = height
return max_height

● Goal: How many time does line height = heights[i] + heights[j] run in 
total?

● Now inner nested loop depends on nested outer loop



❖

Independent

for i in range(n): 
for j in range(n): ... 

● Inner loop doesn’t depend on 
outer loop iteration #. 

● Just multiply: inner body 
executed 𝑛 × 𝑛 = 𝑛2 times.

Dependent

for i in range(n): 
for j in range(i,n): ... 

● Inner loop depends on outer 
loop iteration #. 

● Can’t just multiply: inner body 
executed ??? times.



❖

Dependent Nested Loops

for i in range(n): 
for j in range(i + 1, n): 

height = heights[i] + heights[j] 

● Idea: find formula 𝑓(𝛼) for “number of iterations of inner loop 
during outer iteration 𝛼” 

● Then total:



❖

for i in range(n): 
for j in range(i + 1, n): 

height = heights[i] + heights[j] 

● On outer iter. # 1, inner body runs _________________  times.  (i = 0)

● On outer iter. # 2, inner body runs __________________times.

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

             ?           



❖

for i in range(n): 
for j in range(1, n): #i = 0

height = heights[i] + heights[j] 

● On outer iter. # 1, inner body runs _________________  times.  (i = 0)

● On outer iter. # 2, inner body runs __________________times.  (i = 1)

● On outer iter. # 𝛼, inner body runs __________________times.

● The outer loop runs ____________ times.

          n - 1           

       ?



❖

for i in range(n): 
for j in range(2, n): #i = 1

height = heights[i] + heights[j] 

● On outer iter. # 1, inner body runs _________________  times.  (i = 0)

● On outer iter. # 2, inner body runs __________________times.  (i = 1)

● On outer iter. # 𝛼, inner body runs __________________times.  (i = 𝛼)

● The outer loop runs ____________ times.

          n - 1           

       n - 2

        ?



❖

for i in range(n): 
for j in range(𝛼, n): #i = 𝛼

height = heights[i] + heights[j] 

● On outer iter. # 1, inner body runs _________________  times.  (i = 0)

● On outer iter. # 2, inner body runs __________________times.  (i = 1)

● On outer iter. # 𝛼, inner body runs __________________times.  (i = 𝛼)

● The outer loop runs ____________ times.

          n - 1           

       n - 2

        n - 𝛼

   ?



❖

for i in range(n): 
for j in range(𝛼, n): #i = 𝛼

height = heights[i] + heights[j] 

● On outer iter. # 1, inner body runs _________________  times.  (i = 0)

● On outer iter. # 2, inner body runs __________________times.  (i = 1)

● On outer iter. # 𝛼, inner body runs __________________times.  (i = 𝛼)

● The outer loop runs ____________ times.

          n - 1           

       n - 2

        n - 𝛼

      n



❖

Totalling Up

●  On outer iteration 𝛼, inner body runs 𝑛 − 𝛼 times.
○ That is, 𝑓(𝛼) = 𝑛 − 𝛼 

● There are 𝑛 outer iterations. 

● So we need to calculate:



❖



❖



❖



❖



❖



❖



❖



❖

𝑛(𝑛 - 1)/2



❖

Aside: Arithmetic Sums

● 1 + 2 + 3 + …+ (n-1) + n is an arithmetic sum.

● Formula for total: 𝑛(𝑛 + 1)/2. 

● You should memorize it!



❖



❖

Time Complexity

● tallest_snowman_2 has Θ(𝑛2 ) time complexity 

● Same as original tallest_snowman

● Should we have been able to guess this? Why?



❖

Reason 1: Number of Pairs

● We’re doing constant work for each unordered pair.

● Recall from 40A: number of pairs of 𝑛 objects is

● So Θ(𝑛2 ) 



❖

Reason 2: Half as much work

● Our new solution does roughly half as much work as the old 
one.

● But Θ doesn’t care about constants: 1/2 Θ(𝑛2 ) is still Θ(𝑛2 ).



❖

Main Ideas

1. If the loops are dependent, you’ll usually need:

a.  to write down a summation, 
b. evaluate. 

2. Halving the work (or thirding, quartering, etc.) doesn’t 
change the time complexity.



❖

Exercise

Design a linear time algorithm for this problem.



❖

Growth Rates



❖

Linear vs. Quadratic Scaling



❖

Linear vs. Quadratic Scaling



❖

Linear vs. Quadratic Scaling



❖

Definitions

1.  An algorithm is said to run in linear time if 𝑇 (𝑛) = Θ(𝑛).

2.     An algorithm is said to run in quadratic time if 𝑇 (𝑛) = Θ(𝑛2 ).



❖

Linear Growth

● If input size doubles, time roughly doubles.

●  If code takes 5 seconds on 1,000 points... 

●  ...on 100,000 data points it takes ≈ 500 seconds. 

●  i.e., 8.3 minutes



❖

Quadratic Growth

● If input size doubles, time roughly quadruples.

●  If code takes 5 seconds on 1,000 points... 

●  ...on 100,000 points it takes ≈ 50,000 seconds. 

●  i.e., ≈ 14 hours



❖

In data science...

● Let’s say we have a training set of 10,000 points. 

●  If model takes quadratic time to train, should expect to wait 
minutes to hours. 

●  If model takes linear time to train, should expect to wait 
seconds to minutes. 

● These are rules of thumb only.



❖

Exponential Growth

● Increasing input size by one doubles (triples, etc.) time taken.

● Grows very quickly!

● Example: brute force search of 2𝑛 subsets.

for subset in all_subsets(things): 

print(subset)



❖

Logarithmic Growth

● To increase time taken by one unit, must double (triple, 
etc.) the input size. 

● Grows very slowly

● log 𝑛 grows slower than 𝑛𝛼 for any 𝛼 > 0

○ I.e., log 𝑛 grows slower than 𝑛, √𝑛, 𝑛1/1,000, etc.



❖

Exercise

What is the asymptotic time complexity of the code below as 
a function of 𝑛? 

i = 1 
while i <= n: 

i = i * 2

A: Constant

B: Log

C: Linear

D: Quadratic



❖

Solution
●  Same general strategy as before: “how many times does loop 

body run?”



❖

Solution
●  Same general strategy as before: “how many times does loop 

body run?”

1



❖

Solution
●  Same general strategy as before: “how many times does loop 

body run?”

1
 2



❖

Solution
●  Same general strategy as before: “how many times does loop 

body run?”

1
 2
 2



❖

Solution
●  Same general strategy as before: “how many times does loop 

body run?”

1
 2
 2
  3



❖

Solution
●  Same general strategy as before: “how many times does loop 

body run?”

1
 2
 2
  3
3
3

 3
 4



❖

Common Growth Rates



❖

Question

● Which grows faster, 𝑛! or 2𝑛 ?

A: n!

B: 2n

C: Same

D: Impossible to tell

n! = 1 * 2 * 3 *.....*n 

2n = 2 * 2* 2…….* 2



❖

Do you have any questions?

Thank you!

CampusWire!


