

DSC 40B

Lecture 3 : Nested

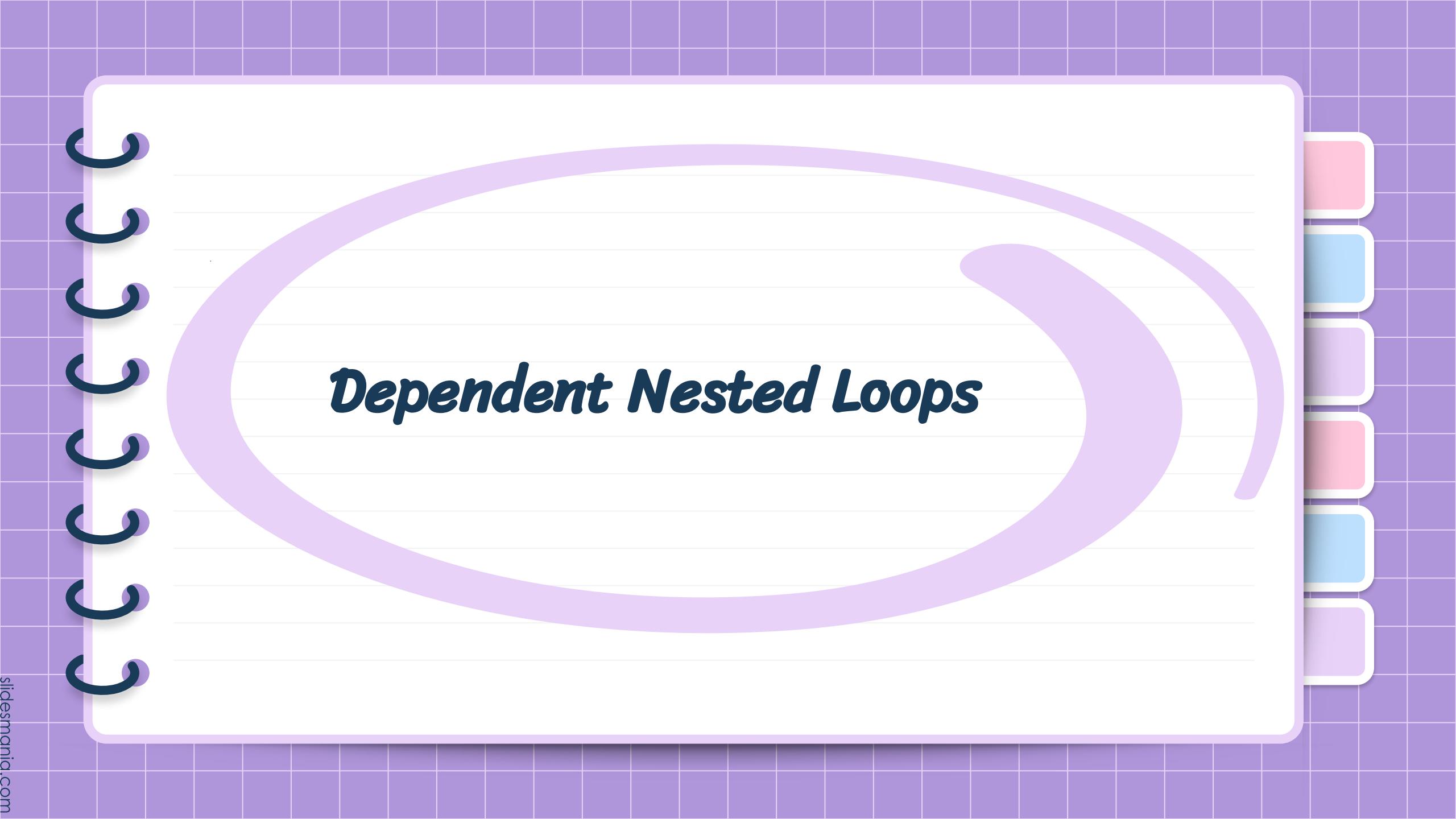
Loop (dependent).

Mic!

Careful!

- Not every nested loop has $\Theta(n^2)$ time complexity!
- In general, if:
 - outer loop iterates a times;
 - inner loop iterates b times for each outer loop iteration
 - We are assuming here that the number of inner loop iterations doesn't depend on which outer loop iteration we're in!
 - then the innermost loop body is executed $a \times b$ times.

```
for x in range(n) :  
    for y in range(n**2) :  
        print(x + y)
```



Dependent Nested Loops

Example 3: Tallest Snowman, Again

- Our previous algorithm for the tallest snowman computed height for each ordered pair of people.
 - $i = 3$ and $j = 7$ is the same as $i = 7$ and $j = 3$
- **Idea:** consider each *unordered* pair only once:

```
for i in range(n):  
    for j in range(i + 1, n):
```
- What is the time complexity?

Pictorially

```
for i in range(4):  
    for j in range(4):  
        print(i, j)
```

(0,0)	(0,1)	(0,2)	(0,3)
(1,0)	(1,1)	(1,2)	(1,3)
(2,0)	(2,1)	(2,2)	(2,3)
(3,0)	(3,1)	(3,2)	(3,3)

Pictorially

```
for i in range(4):  
    for j in range(i + 1, 4):  
        print(i, j)
```

(0,1) (0,2) (0,3)
(1,2) (1,3)
(2,3)

```
def tallest_snowman_2(heights):  
    max_height = -float('inf')  
    n = len(heights)  
    for i in range(n):  
        for j in range(i+1, n):  
            height = heights[i] + heights[j]  
            if height > max_height:  
                max_height = height  
    return max_height
```

- **Goal:** How many time does line `height = heights[i] + heights[j]` run in total?
- Now inner nested loop **depends** on nested outer loop

Independent

```
for i in range(n):  
    for j in range(n): ...
```

- Inner loop doesn't depend on outer loop iteration #.
- **Just multiply**: inner body executed $n \times n = n^2$ times.

Dependent

```
for i in range(n):  
    for j in range(i,n): ...
```

- Inner loop depends on outer loop iteration #.
- Can't just multiply: inner body executed ??? times.

Dependent Nested Loops

```
for i in range(n):  
    for j in range(i + 1, n):  
        height = heights[i] + heights[j]
```

- **Idea:** find formula $f(\alpha)$ for “number of iterations of inner loop during outer iteration α ”
- Then total: $\sum_{\alpha=1}^n f(\alpha)$

```
for i in range(n):  
    for j in range(i + 1, n):  
        height = heights[i] + heights[j]
```

- On outer iter. # 1, inner body runs _____ times. (i = 0)
- On outer iter. # 2, inner body runs _____ times.
- On outer iter. # α , inner body runs _____ times.
- The outer loop runs _____ times.

```
for i in range(n):  
    for j in range(1, n): #i = 0  
        height = heights[i] + heights[j]
```

- On outer iter. # 1, inner body runs $n - 1$ times. (i = 0)
- On outer iter. # 2, inner body runs $?$ times. (i = 1)
- On outer iter. # α , inner body runs times.
- The outer loop runs times.

```
for i in range(n):  
    for j in range(2, n): #i = 1  
        height = heights[i] + heights[j]
```

- On outer iter. # 1, inner body runs $n - 1$ times. ($i = 0$)
- On outer iter. # 2, inner body runs $n - 2$ times. ($i = 1$)
- On outer iter. # α , inner body runs $?$ times. ($i = \alpha$)
- The outer loop runs _____ times.

```
for i in range(n):  
    for j in range( $\alpha$ , n): #i =  $\alpha$   
        height = heights[i] + heights[j]
```

- On outer iter. # 1, inner body runs $n - 1$ times. ($i = 0$)
- On outer iter. # 2, inner body runs $n - 2$ times. ($i = 1$)
- On outer iter. # α , inner body runs $n - \alpha$ times. ($i = \alpha$)
- The outer loop runs $?$ times.

```
for i in range(n):  
    for j in range( $\alpha$ , n): #i =  $\alpha$   
        height = heights[i] + heights[j]
```

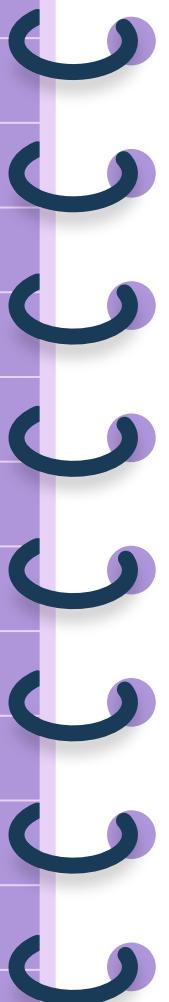
- On outer iter. # 1, inner body runs $n - 1$ times. ($i = 0$)
- On outer iter. # 2, inner body runs $n - 2$ times. ($i = 1$)
- On outer iter. # α , inner body runs $n - \alpha$ times. ($i = \alpha$)
- The outer loop runs n times.

Totalling Up

- On outer iteration α , inner body runs $n - \alpha$ times.
 - That is, $f(\alpha) = n - \alpha$
- There are n outer iterations.
- So we need to calculate:

$$\sum_{\alpha=1}^n f(\alpha) = \sum_{\alpha=1}^n (n - \alpha)$$

$$\sum_{\alpha=1}^n (n - \alpha) =$$



1st outer iter

$(n - 1) +$

$\sum_{\alpha=1}^n (n - \alpha)$

$$\sum_{\alpha=1}^n (n - \alpha)$$

=

$$(n - 1) + (n - 2) +$$

1st outer iter

2nd outer iter

$$\sum_{\alpha=1}^n (n - \alpha)$$

=

$$(n - 1) + (n - 2) + \dots + (n - \alpha) +$$

1st outer iter

2nd outer iter

kth outer iter

$$\sum_{\alpha=1}^n (n - \alpha)$$

=

$$\underbrace{(n - 1)}_{\text{1st outer iter}} + \underbrace{(n - 2)}_{\text{2nd outer iter}} + \dots + \underbrace{(n - \alpha)}_{\text{kth outer iter}} + \dots + \underbrace{(n - (n - 1))}_{\text{(n-1)th outer iter}} + r$$

$$\sum_{\alpha=1}^n (n - \alpha)$$

=

$$\underbrace{(n - 1)}_{1\text{st outer iter}} + \underbrace{(n - 2)}_{2\text{nd outer iter}} + \dots + \underbrace{(n - \alpha)}_{k\text{th outer iter}} + \dots + \underbrace{(n - (n - 1))}_{(n-1)\text{th outer iter}} + \underbrace{(n - n)}_{n\text{th outer iter}}$$

$$\sum_{\alpha=1}^n (n - \alpha)$$

=

$$\underbrace{(n - 1)}_{1\text{st outer iter}} + \underbrace{(n - 2)}_{2\text{nd outer iter}} + \dots + \underbrace{(n - \alpha)}_{k\text{th outer iter}} + \dots + \underbrace{(n - (n - 1))}_{(n-1)\text{th outer iter}} + \underbrace{(n - n)}_{n\text{th outer iter}}$$

$$1 + 2 + 3 + \dots + (n - 3) + (n - 2) + (n - 1)$$

=

$$\sum_{\alpha=1}^n (n - \alpha)$$

=

$$\underbrace{(n - 1)}_{1\text{st outer iter}} + \underbrace{(n - 2)}_{2\text{nd outer iter}} + \dots + \underbrace{(n - \alpha)}_{k\text{th outer iter}} + \dots + \underbrace{(n - (n - 1))}_{(n-1)\text{th outer iter}} + \underbrace{(n - n)}_{n\text{th outer iter}}$$

$$1 + 2 + 3 + \dots + (n - 3) + (n - 2) + (n - 1)$$

=

$$n(n - 1)/2$$

Aside: Arithmetic Sums

- $1 + 2 + 3 + \dots + (n-1) + n$ is an arithmetic sum.
- Formula for total: $n(n + 1)/2$.
- **You should memorize it!**

Time Complexity

- tallest_snowman_2 has $\Theta(n^2)$ time complexity
- Same as original tallest_snowman
- Should we have been able to guess this? Why?

Reason 1: Number of Pairs

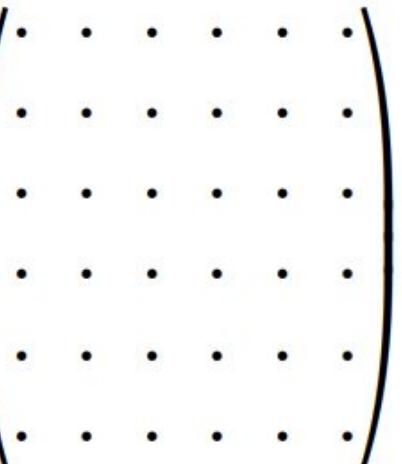
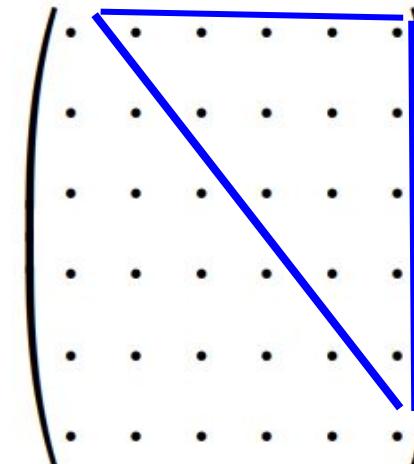
- We're doing constant work for each unordered pair.
- Recall from 40A: number of pairs of n objects is

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$$

- So $\Theta(n^2)$

Reason 2: Half as much work

- Our new solution does roughly half as much work as the old one.
- But Θ doesn't care about constants: $1/2 \Theta(n^2)$ is still $\Theta(n^2)$.



Main Ideas

1. If the loops are **dependent**, you'll usually need:
 - a. to write down a summation,
 - b. evaluate.
2. Halving the work (or thirding, quartering, etc.) doesn't change the time complexity.

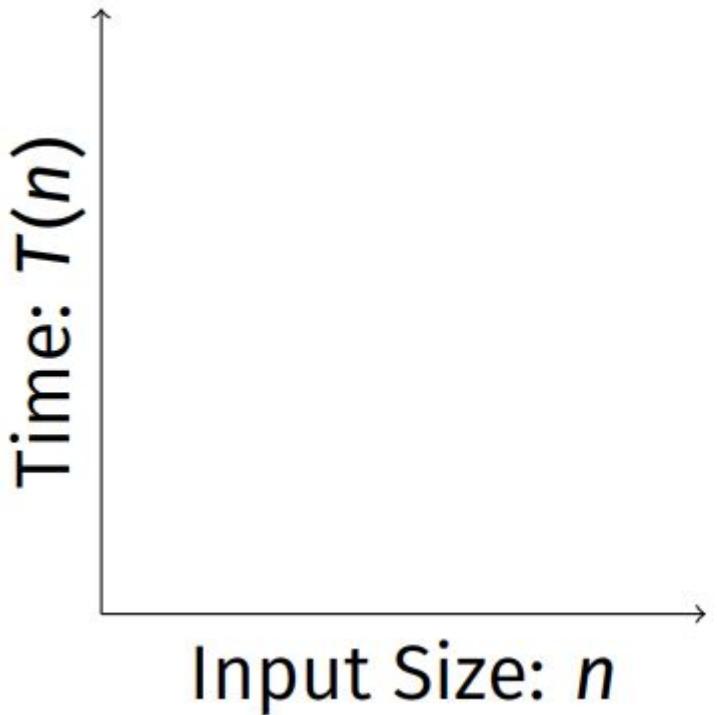
Exercise

Design a **linear** time algorithm for this problem.

Growth Rates

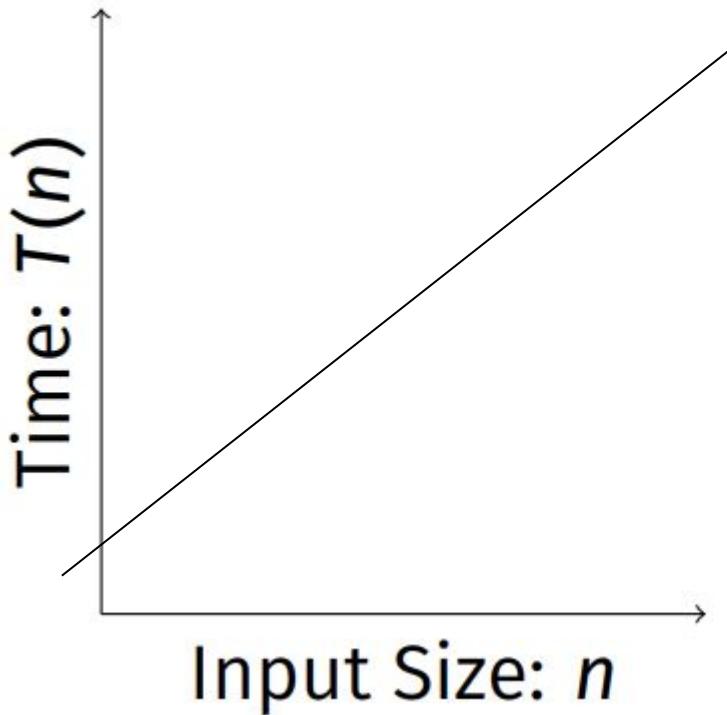
• • • • • • • •

Linear vs. Quadratic Scaling



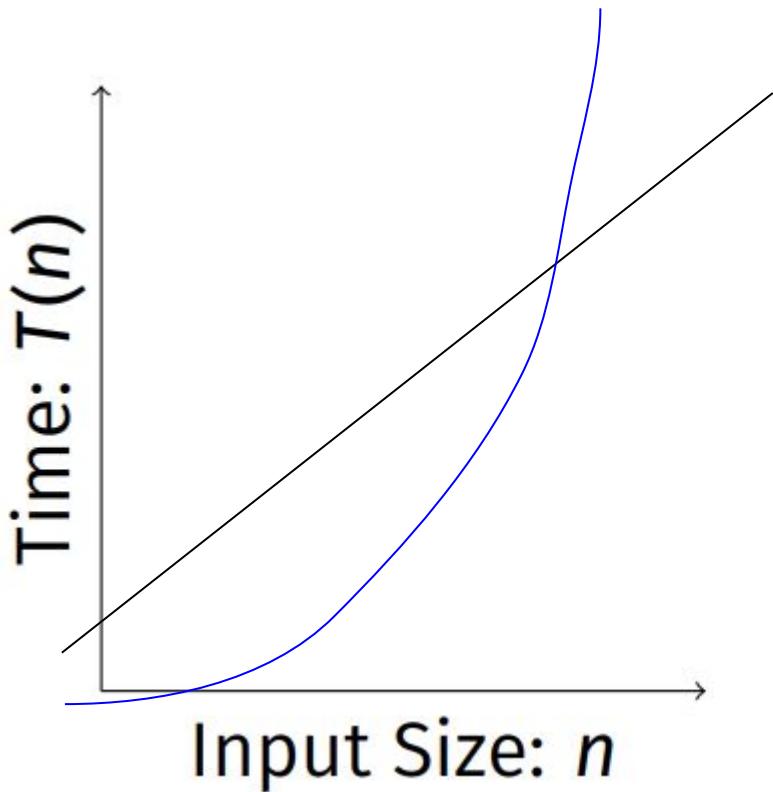
- ▶ $T(n) = \Theta(n)$ means " $T(n)$ grows like n "
- ▶ $T(n) = \Theta(n^2)$ means " $T(n)$ grows like n^2 "

Linear vs. Quadratic Scaling



- ▶ $T(n) = \Theta(n)$ means " $T(n)$ grows like n "
- ▶ $T(n) = \Theta(n^2)$ means " $T(n)$ grows like n^2 "

Linear vs. Quadratic Scaling



- ▶ $T(n) = \Theta(n)$ means “ $T(n)$ grows like n ”
- ▶ $T(n) = \Theta(n^2)$ means “ $T(n)$ grows like n^2 ”

Definitions

1. An algorithm is said to run in **linear** time if $T(n) = \Theta(n)$.
2. An algorithm is said to run in **quadratic** time if $T(n) = \Theta(n^2)$.

Linear Growth

- If input size doubles, time roughly doubles.
- If code takes 5 seconds on 1,000 points...
- ...on 100,000 data points it takes \approx 500 seconds.
- i.e., 8.3 minutes

Quadratic Growth

- If input size doubles, time *roughly quadruples*.
- If code takes 5 seconds on 1,000 points...
- ...on 100,000 points it takes \approx 50,000 seconds.
- i.e., \approx 14 hours

In data science...

- Let's say we have a training set of 10,000 points.
- If model takes **quadratic** time to train, should expect to wait minutes to hours.
- If model takes **linear** time to train, should expect to wait seconds to minutes.
- These are rules of thumb only.

Exponential Growth

- Increasing input size by **one** doubles (triples, etc.) time taken.
- **Grows very quickly!**
- **Example:** brute force search of 2^n subsets.

```
for subset in all_subsets(things):  
    print(subset)
```


Logarithmic Growth

- To increase time taken by one unit, must *double* (triple, etc.) the input size.
- **Grows very slowly**
- $\log n$ grows slower than n^α for any $\alpha > 0$
 - I.e., $\log n$ grows *slower* than n , \sqrt{n} , $n^{1/1,000}$, etc.

Exercise

What is the asymptotic time complexity of the code below as a function of n ?

```
i = 1
while i <= n:
    i = i * 2
```

A: Constant

B: Log

C: Linear

D: Quadratic

Solution

- Same general strategy as before: “how many times does loop body run?”

```
i = 1
while i <= n:
    i = i * 2
```

n	# iters.
1	
2	
3	
4	
5	
6	
7	
8	

Solution

- Same general strategy as before: “how many times does loop body run?”

```
i = 1
while i <= n:
    i = i * 2
```

n	# iters.
1	1
2	
3	
4	
5	
6	
7	
8	

Solution

- Same general strategy as before: “how many times does loop body run?”

```
i = 1
while i <= n:
    i = i * 2
```

n	# iters.
1	1
2	2
3	
4	
5	
6	
7	
8	

Solution

- Same general strategy as before: “how many times does loop body run?”

```
i = 1
while i <= n:
    i = i * 2
```

n	# iters.
1	1
2	2
3	2
4	
5	
6	
7	
8	

Solution

- Same general strategy as before: “how many times does loop body run?”

```
i = 1
while i <= n:
    i = i * 2
```

n	# iters.
1	1
2	2
3	2
4	3
5	
6	
7	
8	

Solution

- Same general strategy as before: “how many times does loop body run?”

```
i = 1
while i <= n:
    i = i * 2
```

<u>n</u>	# iters.
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	4

Common Growth Rates

- ▶ $\Theta(1)$: **constant**
- ▶ $\Theta(\log n)$: **logarithmic**
- ▶ $\Theta(n)$: **linear**
- ▶ $\Theta(n \log n)$: **linearithmic**
- ▶ $\Theta(n^2)$: **quadratic**
- ▶ $\Theta(n^3)$: **cubic**
- ▶ $\Theta(2^n)$: **exponential**

Question

- Which grows **faster**, $n!$ or 2^n ?

$$n! = 1 * 2 * 3 * \dots * n$$

$$2^n = 2 * 2 * 2 * \dots * 2$$

A: $n!$

B: 2^n

C: Same

D: Impossible to tell

Thank you!

Do you have any questions?

CampusWire!