
❖

DSC 40B
Lecture 21 :

Shortest Path

❖

Shortest Paths

❖

Example

sd

la

❖

Recall

● The length of a path is ?

❖

Recall

● The length of a path is (# of nodes) − 1

❖

Definitions

● A shortest path between 𝑢 and 𝑣 is a path between 𝑢 and 𝑣
with smallest possible length.
○ There may be several, or none at all.

● The shortest path distance is the length of a shortest path.
○ Convention: ∞ if no path exists.
○ “the distance between 𝑢 and 𝑣” means spd.

❖

Today: Shortest Paths

● Given: directed/undirected graph 𝐺, source 𝑢
● Goal: find shortest path from 𝑢 to every other node.

❖

Example

❖

Example

 𝑢

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ?

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Key Property of Shortest Paths

● Suppose you have shortest path from 𝑢 to 𝑣.

u v

❖

Key Property of Shortest Paths

● Suppose you have shortest path from 𝑢 to 𝑣.
● Suppose it goes through the edge (𝑥, 𝑣).

○ 𝑥 is only 1 edge away from 𝑣.

u v……….. x

❖

Key Property of Shortest Paths

● Suppose you have shortest path from 𝑢 to 𝑣.
● Suppose it goes through the edge (𝑥, 𝑣).

○ 𝑥 is only 1 edge away from 𝑣.
● Then the part of that path from 𝑢 to 𝑥 is a shortest path.

u v……….. x

❖

Key Property, Restated mic

● A shortest path of length 𝑘 is composed of:
○ A shortest path of length 𝑘 - 1
○ Plus one edge

❖

Question

Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The distance from:

● 𝑢 to 𝑎 is 5.
● 𝑢 to 𝑏 is 3.
● 𝑢 to 𝑐 is 7.

What is the distance from 𝑢 to 𝑣?

A: 6

B: 3

C: 4

D: 8

E: Not enough info

❖

Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The distance from:

● 𝑢 to 𝑎 is 5.
● 𝑢 to 𝑏 is 3.
● 𝑢 to 𝑐 is 7.

What is the distance from 𝑢 to 𝑣?

 𝑣

 a

 b

 c

❖

Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The distance from:

● 𝑢 to 𝑎 is 5.
● 𝑢 to 𝑏 is 3.
● 𝑢 to 𝑐 is 7.

What is the distance from 𝑢 to 𝑣?

 𝑣

 a

 b

 c

 𝑢

❖

Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The distance from:

● 𝑢 to 𝑎 is 5.
● 𝑢 to 𝑏 is 3.
● 𝑢 to 𝑐 is 7.

What is the distance from 𝑢 to 𝑣?

 𝑣

 a

 b

 c

 𝑢

 5
3

7

❖

Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The distance from:

● 𝑢 to 𝑎 is 5.
● 𝑢 to 𝑏 is 3.
● 𝑢 to 𝑐 is 7.

What is the distance from 𝑢 to 𝑣?

 𝑣

 a

 b

 c

 𝑢

 5
3

7

 4

❖

Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The distance from:

● 𝑢 to 𝑎 is 5.
● 𝑢 to 𝑏 is 3.
● 𝑢 to 𝑐 is 7.

What is the distance from 𝑢 to 𝑣?

 𝑣

 a

 b

 c

 𝑢

 5
3

7

 4

❖

Algorithm Idea

● Find all nodes distance 1 from source.

● Use these to find all nodes distance 2 from source.

● Use these to find all nodes distance 3 from source.

● …..

❖

It turns out...

...this is exactly what BFS does.

❖

 A

 / \

 B C

 | |

 D E

 \

 F

❖

BFS for Shortest Paths

❖

Key Property of BFS

● For any 𝑘 ≥ 1 you choose: #take k = 10

● All nodes distance 𝑘 − 1 (9) from source are added to the
queue before any node of distance 𝑘 (10).

● Therefore, nodes are “processed” (popped from queue) in
order of distance from source.

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0)]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0), a(1), b(1)]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0), a(1), b(1), c(2), d(2)]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0), a(1), b(1), c(2), d(2)]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0), a(1), b(1), c(2), d(2)]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0), a(1), b(1), c(2), d(2), e(3)]

❖

Example

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

[𝑢(0), a(1), b(1), c(2), d(2), e(3)]

❖

Discovering Shortest Paths

● We “discover” shortest paths when we pop a node from
queue and look at its neighbors.

● But the neighbor’s status matters!

❖

Consider This

● We pop a node 𝑠.

● It has a neighbor 𝑣 whose status is undiscovered.

● We’ve discovered a shortest path to 𝑣 through 𝑠!

❖

Consider This

● We pop a node 𝑠.

● It has a neighbor 𝑣 whose status is pending or visited.

● We already have a shortest path to 𝑣.

❖

Modifying BFS

● Use BFS “framework”.

● Return dictionary of search predecessors.
○ If 𝑣 is discovered while visiting 𝑢, we say that 𝑢 is the BFS

predecessor of 𝑣.
○ This encodes the shortest paths.

● Also return dictionary of shortest path distances.

❖

def bfs_shortest_path(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
pending.append(v)

 status[u] == 'visited'
return predecessor, distance

❖

def bfs_shortest_path(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
pending.append(v)

 status[u] == 'visited'
return predecessor, distance

u

v

❖

def bfs_shortest_path(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
pending.append(v)

 status[u] == 'visited'
return predecessor, distance

u

v

 9

❖

def bfs_shortest_path(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
pending.append(v)

 status[u] == 'visited'
return predecessor, distance

u

v

 9

10

❖

 f

 𝑢

 a

 b

 c

 d

 e

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = {

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { predec = {

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { predec = {

[]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = {‘u’: 0 predec = {

[𝑢]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0 predec = {

[𝑢]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1 predec = {

[𝑢]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1 predec = {‘a’: ‘u’

[𝑢]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1 predec = {‘a’: ‘u’

[𝑢, a]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1 predec = {‘a’: ‘u’

[𝑢, a]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1 predec = {‘a’: ‘u’, ‘b’: ‘u’

[𝑢, a]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1 predec = {‘a’: ‘u’, ‘b’: ‘u’

[𝑢, a, b]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1 predec = {‘a’: ‘u’, ‘b’: ‘u’

[a, b]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1 predec = {‘a’: ‘u’, ‘b’: ‘u’

[a, b]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2 predec = {‘a’: ‘u’, ‘b’: ‘u’

[a, b]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’,

[a, b]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: ∞

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’,

[a, b, c]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’,

[a, b, c]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[a, b, c]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[a, b, c, d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[b, c, d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[c, d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: ∞

Dist: ∞

distance = { ‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2 predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

distance = {‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2, ‘e’: 3} predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,

[d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

distance = {‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2, ‘e’: 3} predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,
 ‘e’: ‘d’}

[d]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

distance = {‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2, ‘e’: 3} predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,
 ‘e’: ‘d’}

[d, e]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

distance = {‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2, ‘e’: 3} predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,
 ‘e’: ‘d’}

[e]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

distance = {‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2, ‘e’: 3} predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,
 ‘e’: ‘d’}

[]

❖

 f

 𝑢

 a

 b

 c

 d

 e

Dist: 0

Dist: 1

Dist: 1

Dist: 2

Dist: 2

Dist: 3

Dist: ∞

distance = {‘u’: 0, ‘a’: 1, ‘b’: 1, ‘c’:2, ‘d’: 2, ‘e’: 3,
‘f’ : ∞ }

predec = {‘a’: ‘u’, ‘b’: ‘u’,
 ‘c’: ‘a’, ‘d’: ‘a’,
 ‘e’: ‘d’, ‘f’: None,
 ‘u’: None}

[]

❖

BFS Trees

❖

Result of BFS

● Each node reachable from source has a single BFS
predecessor.
○ Except for the source itself.

● The result is a tree (or forest).

❖

Trees

● A (free) tree is an undirected graph 𝑇 = (𝑉 , 𝐸) such that 𝑇
is connected and |𝐸| = |𝑉 | − 1.

● A forest is graph in which each connected component is
a tree.

❖

BFS Trees (Forests)

● If the input is connected, BFS produces a tree.

● If the input is not connected, BFS produces a forest.

❖

Example

 𝑢

How many nodes?
How many edges?

❖

Example

❖

BFS Trees

● BFS trees and forests encode shortest path
distances.

❖

Do you have any questions?

Thank you!

CampusWire!

