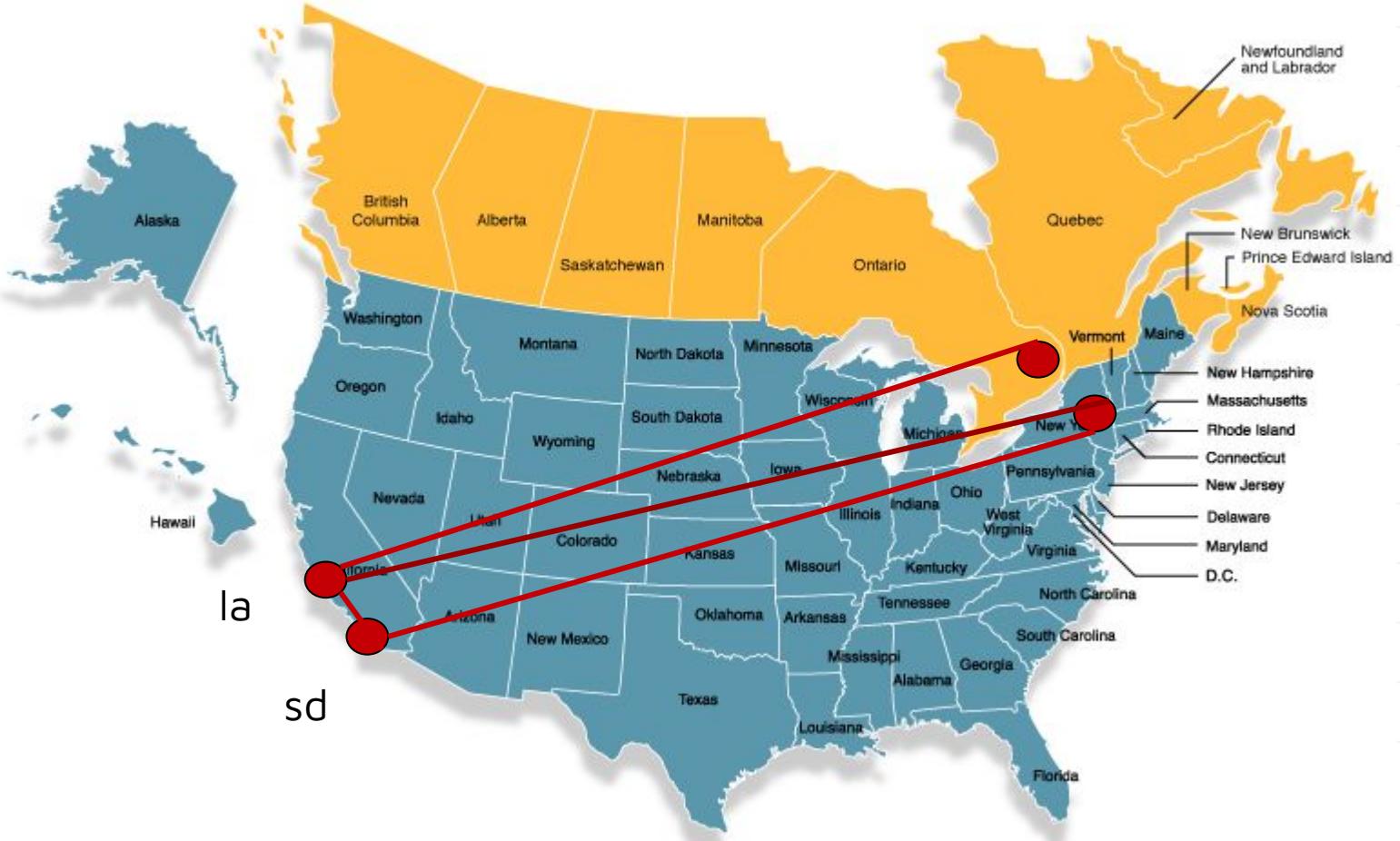


DSC 40B

Lecture 21:
shortest Path

Shortest Paths

Example



Recall

- The **length** of a path is ?

Recall

- The **length** of a path is (# of nodes) - 1

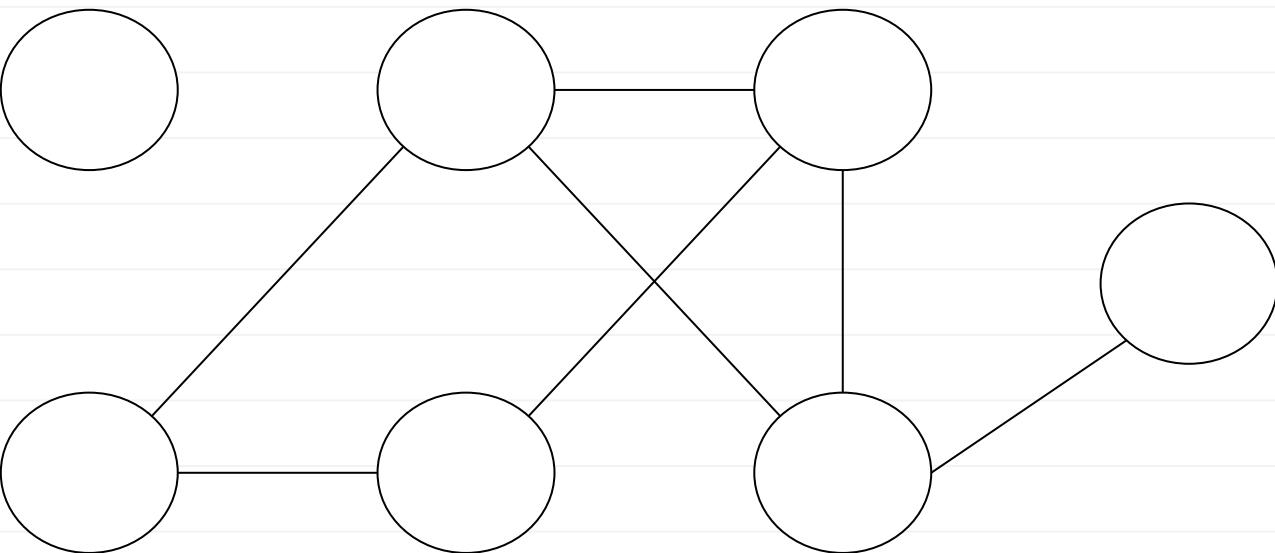
Definitions

- A **shortest path** between u and v is a path between u and v with **smallest** possible length.
 - There may be several, or none at all.
- The **shortest path distance** is the length of a shortest path.
 - Convention: ∞ if no path exists.
 - “the distance between u and v ” means spd .

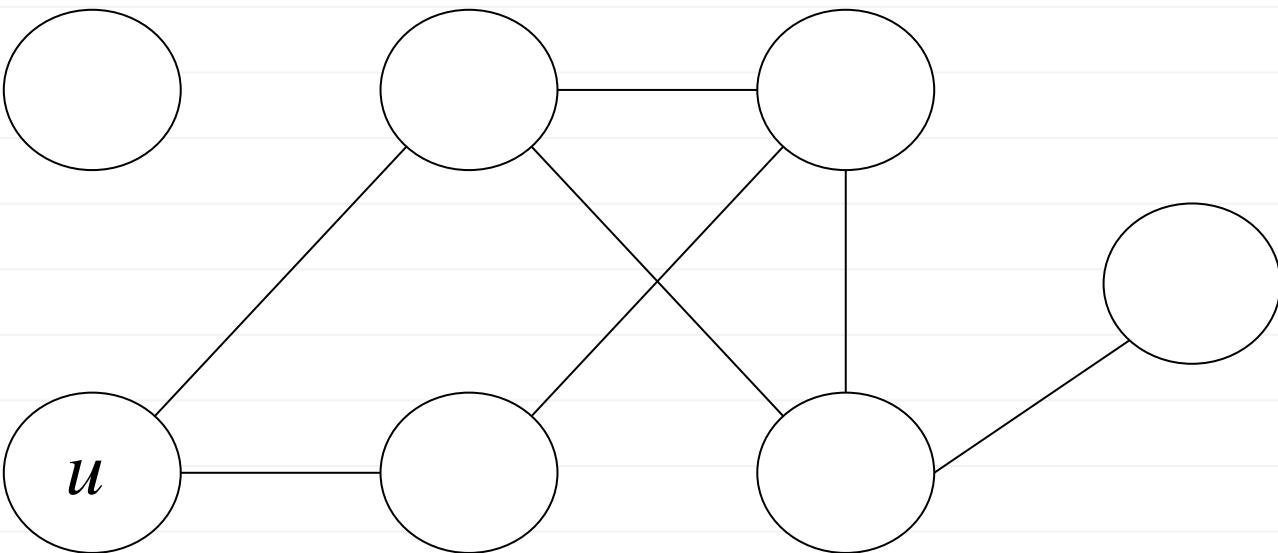
Today: Shortest Paths

- **Given:** directed/undirected graph G , source u
- **Goal:** find shortest path from u to **every other node**.

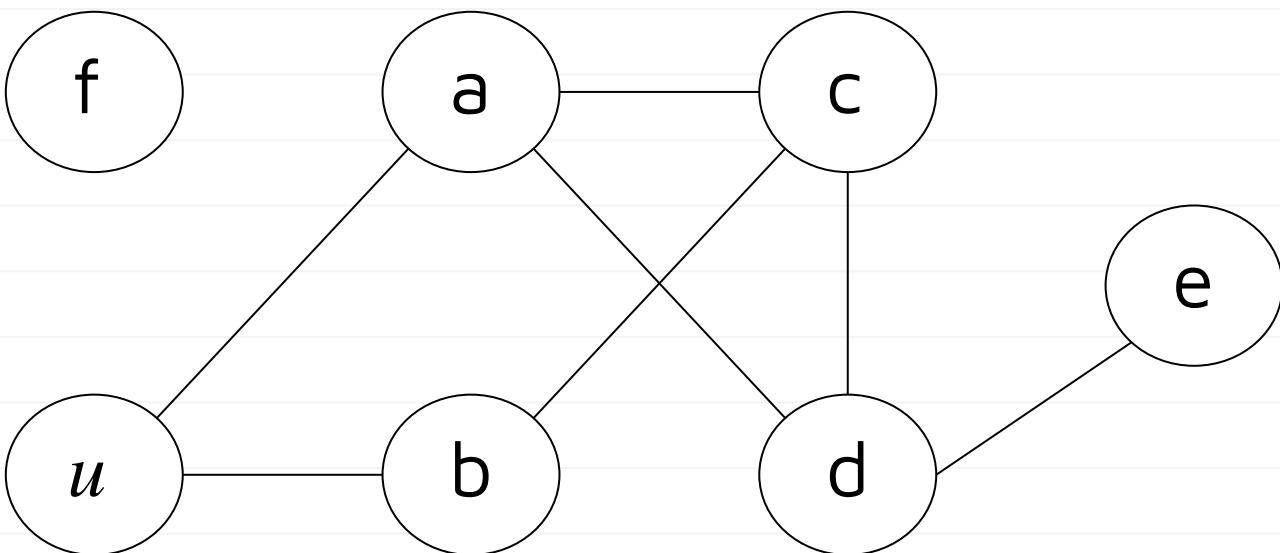
Example



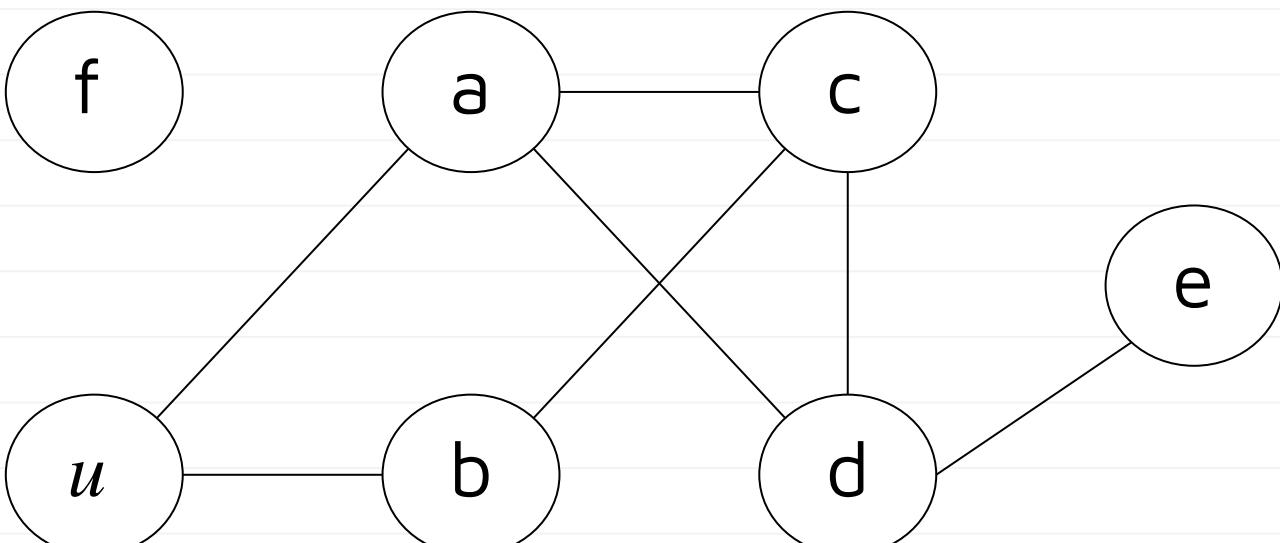
Example



Example

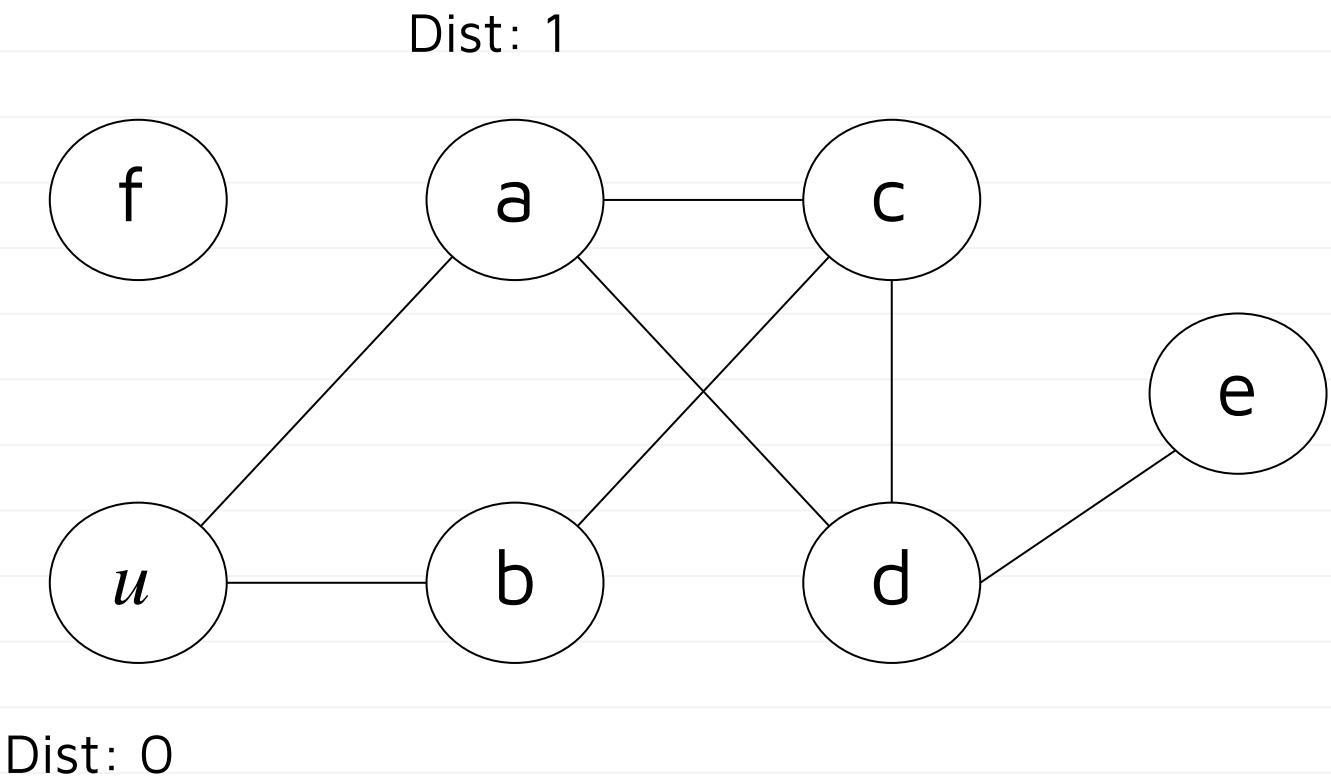


Example

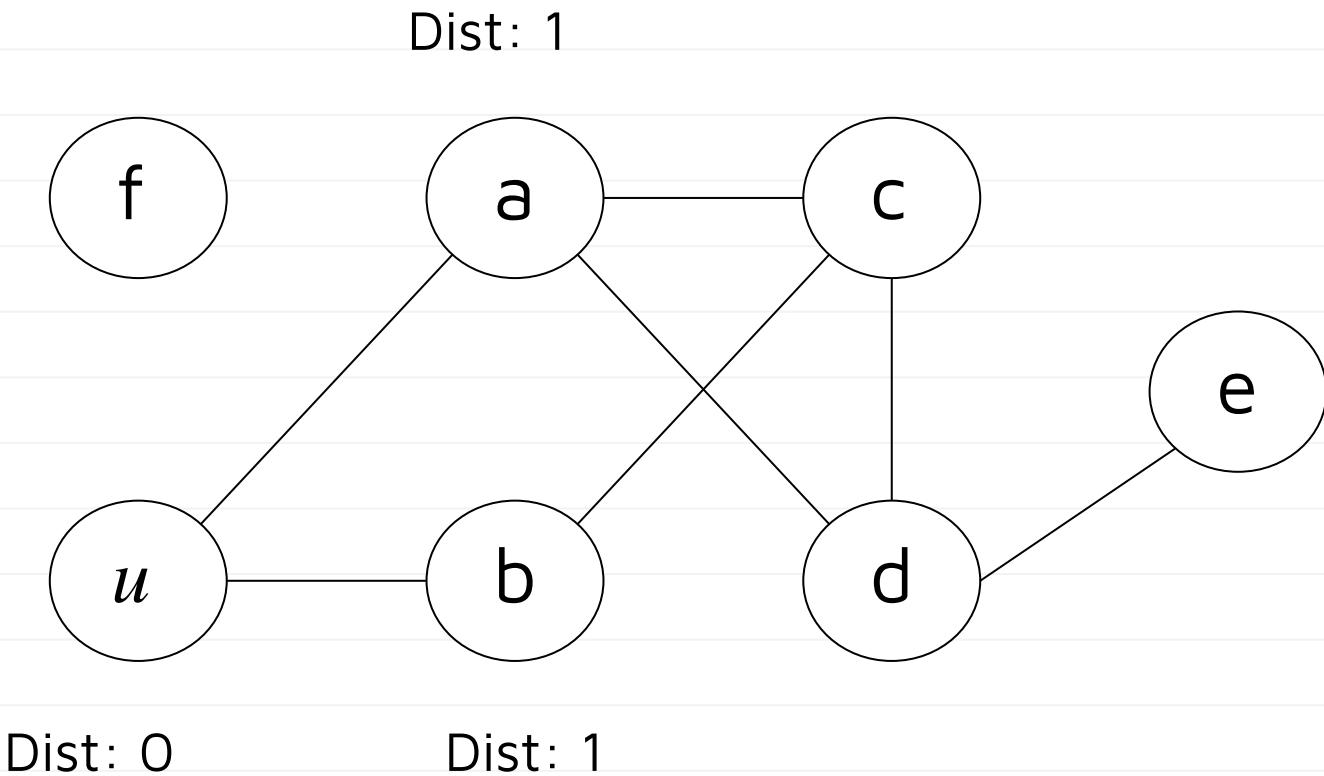


Dist: 0

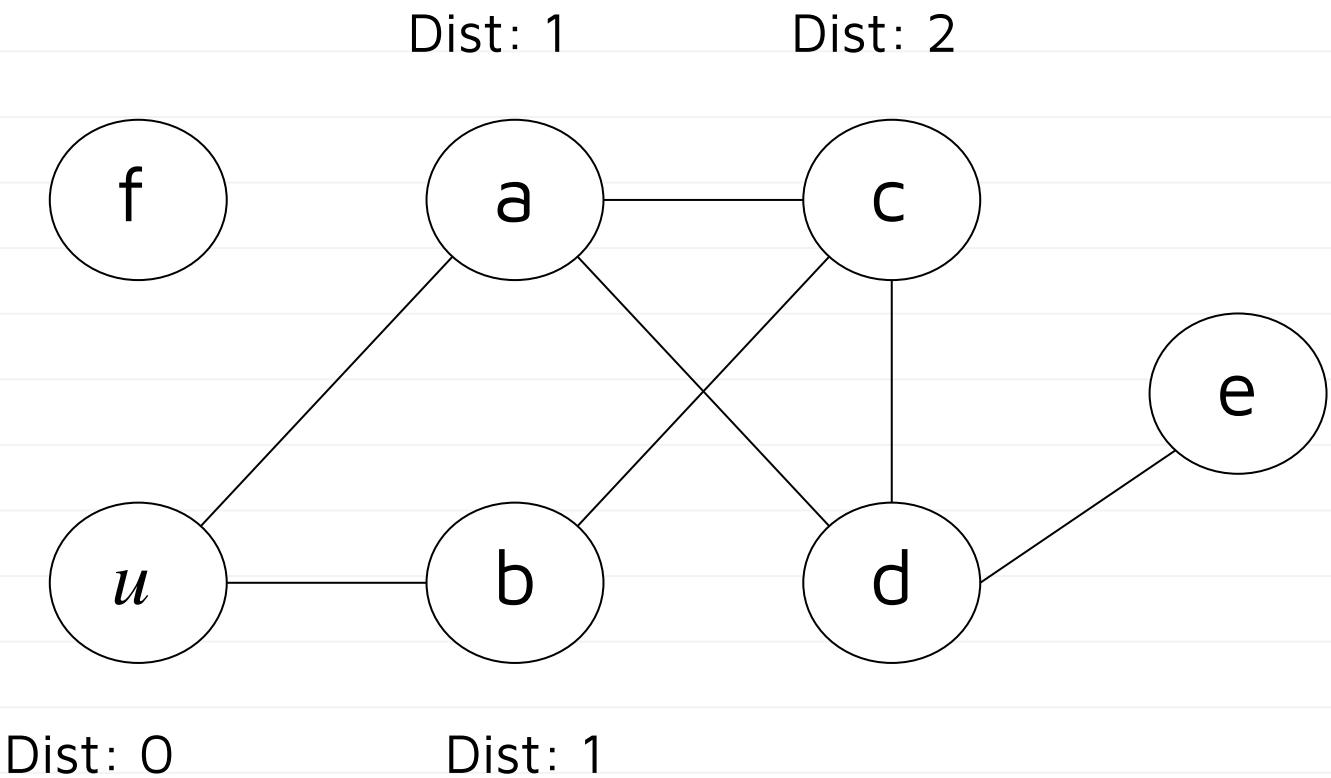
Example



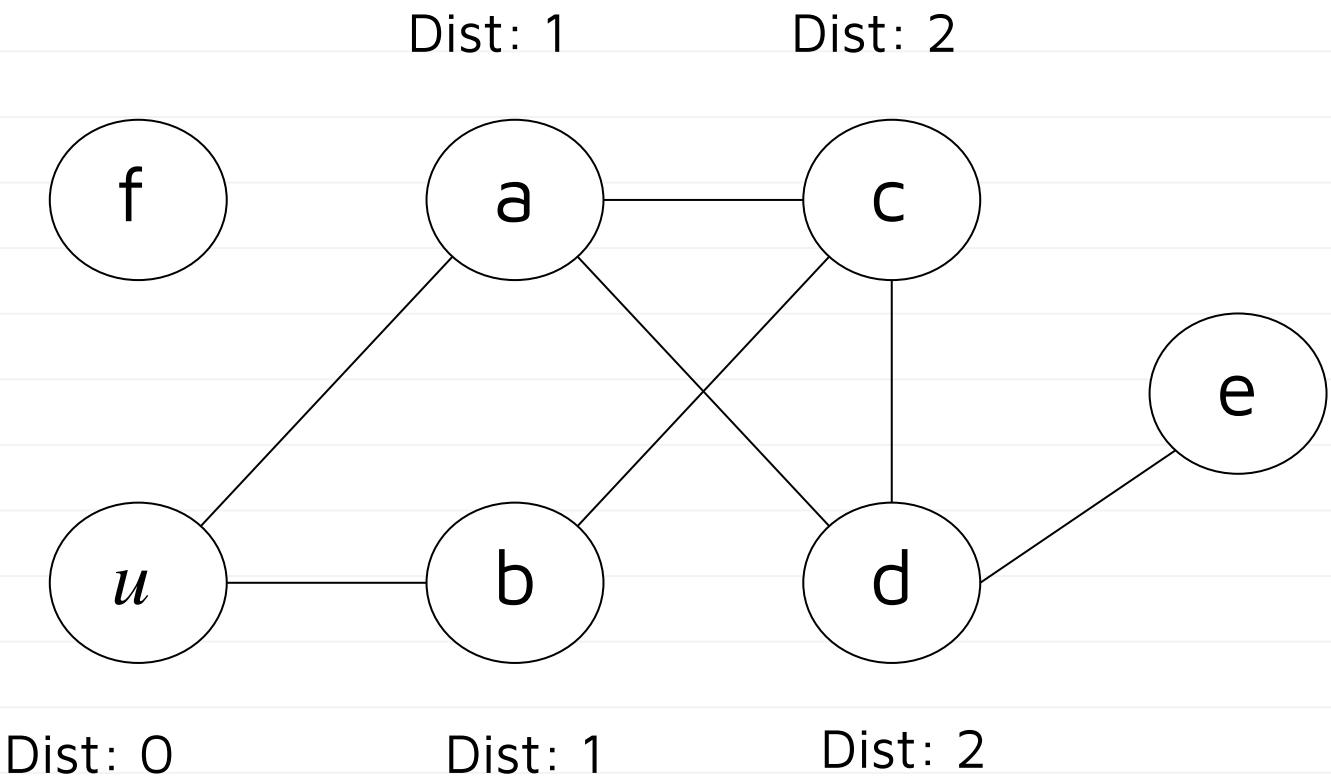
Example



Example



Example

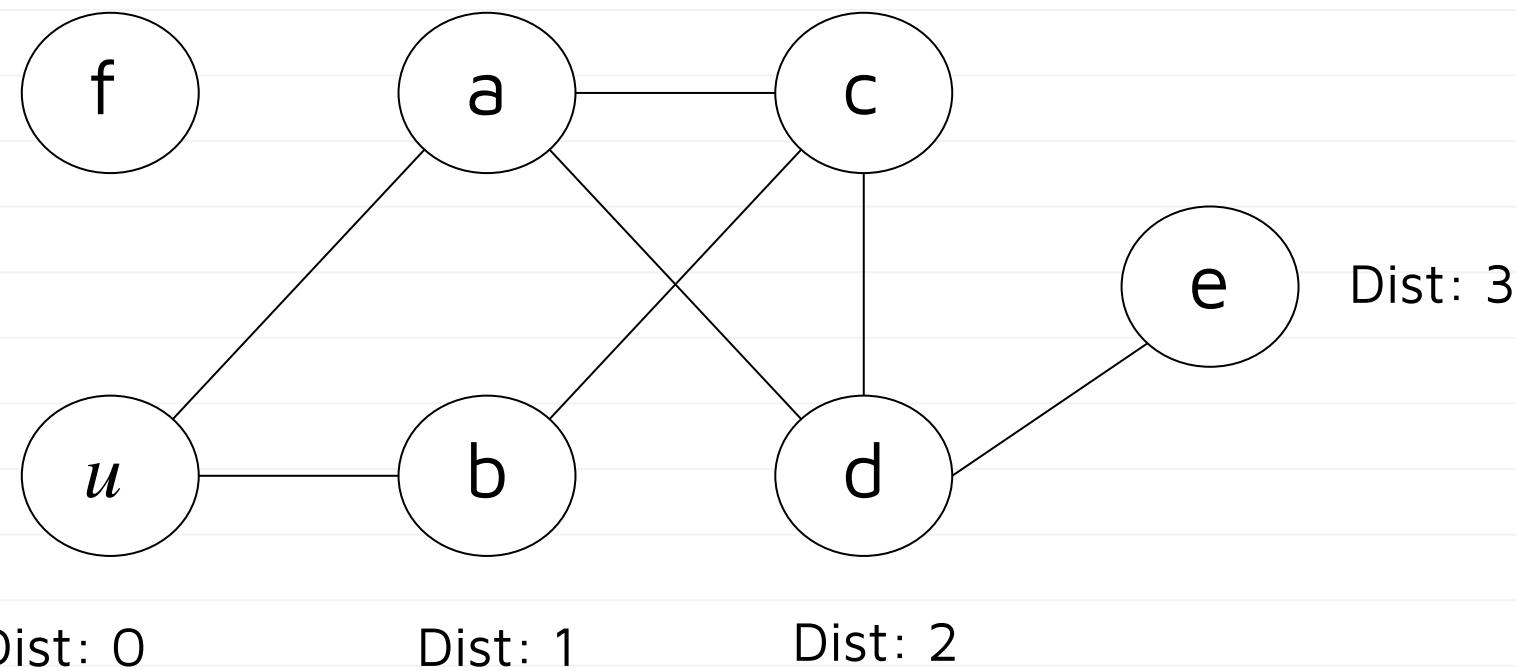


Example

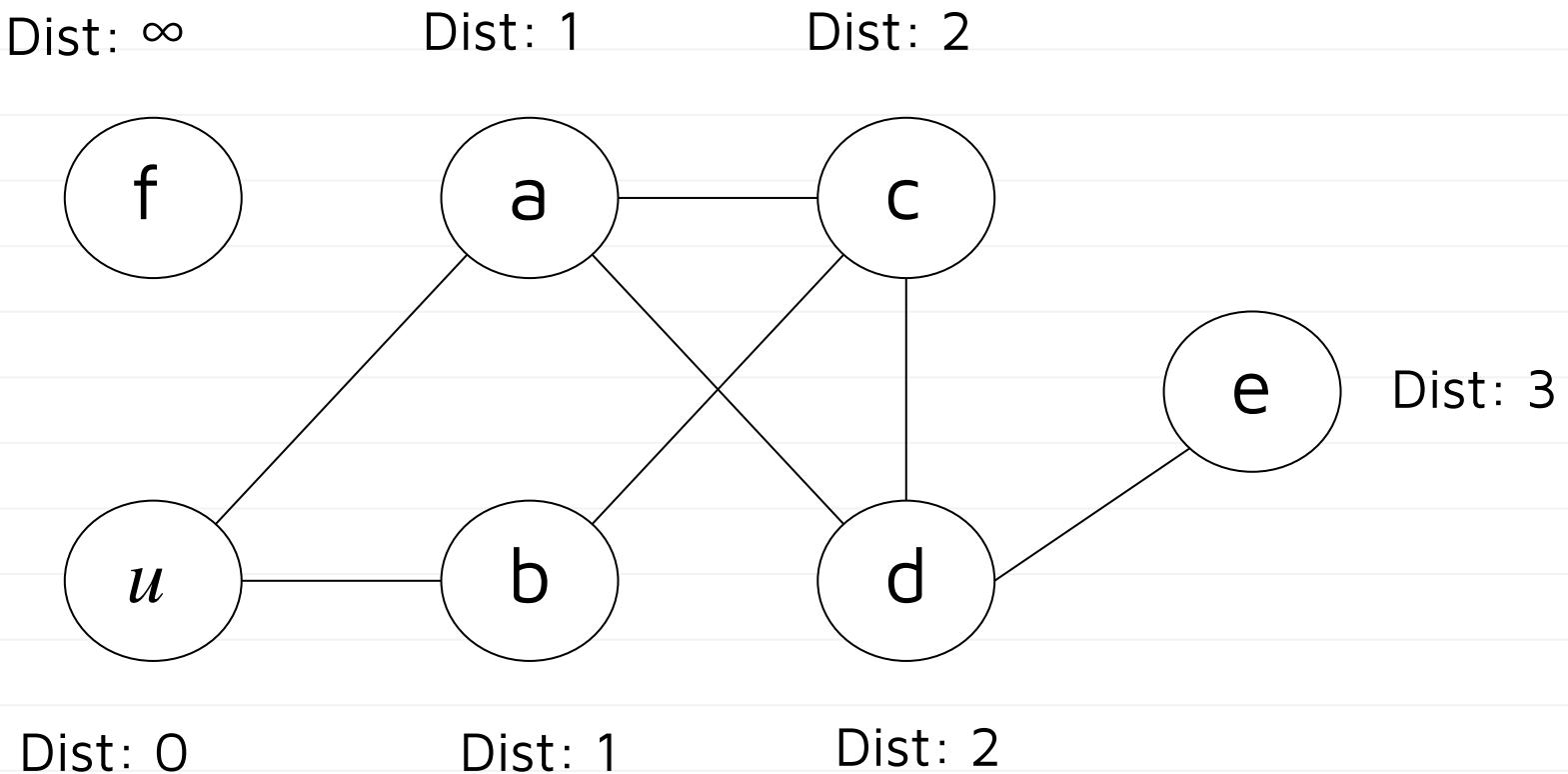
Dist: ?

Dist: 1

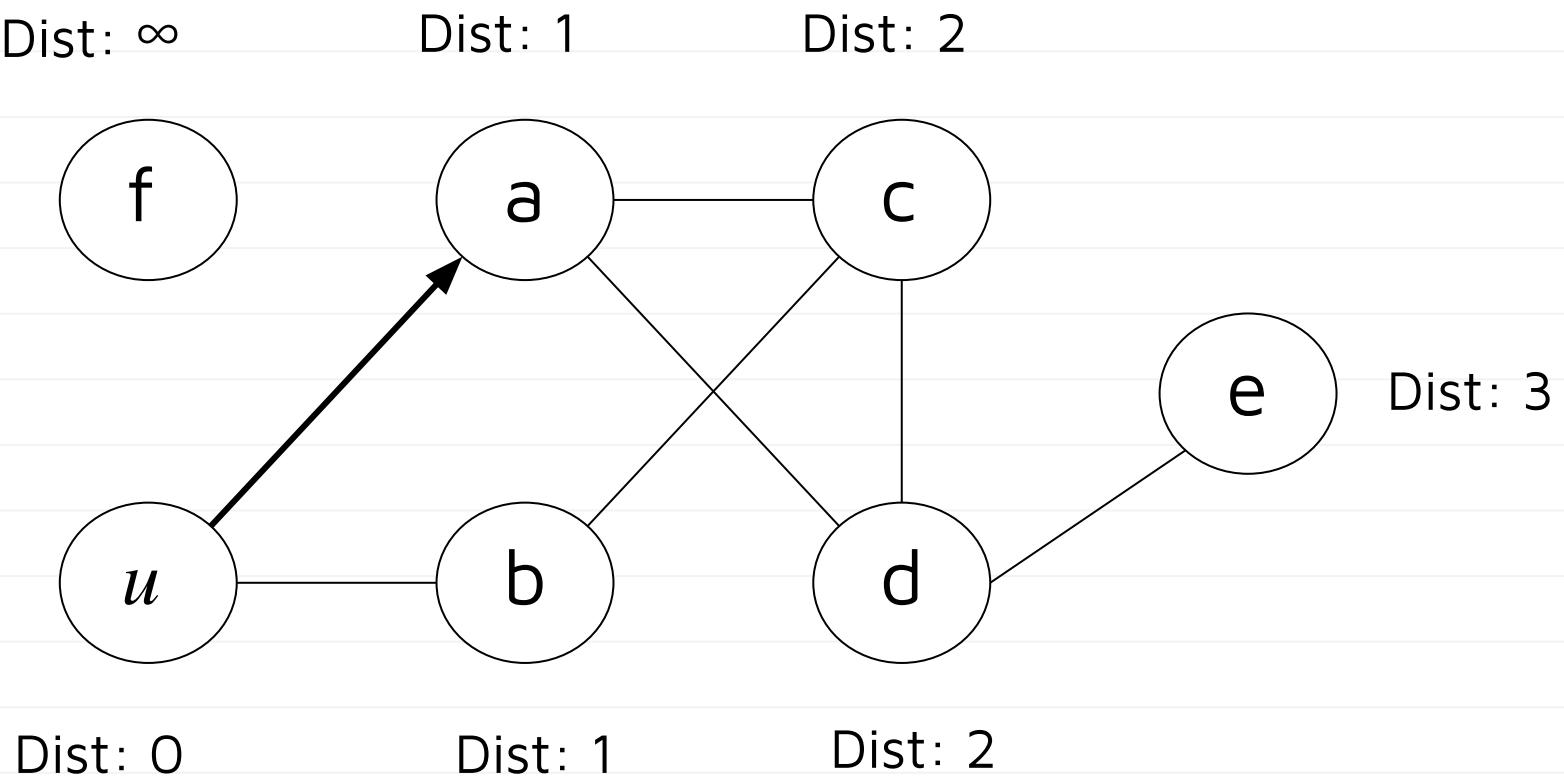
Dist: 2



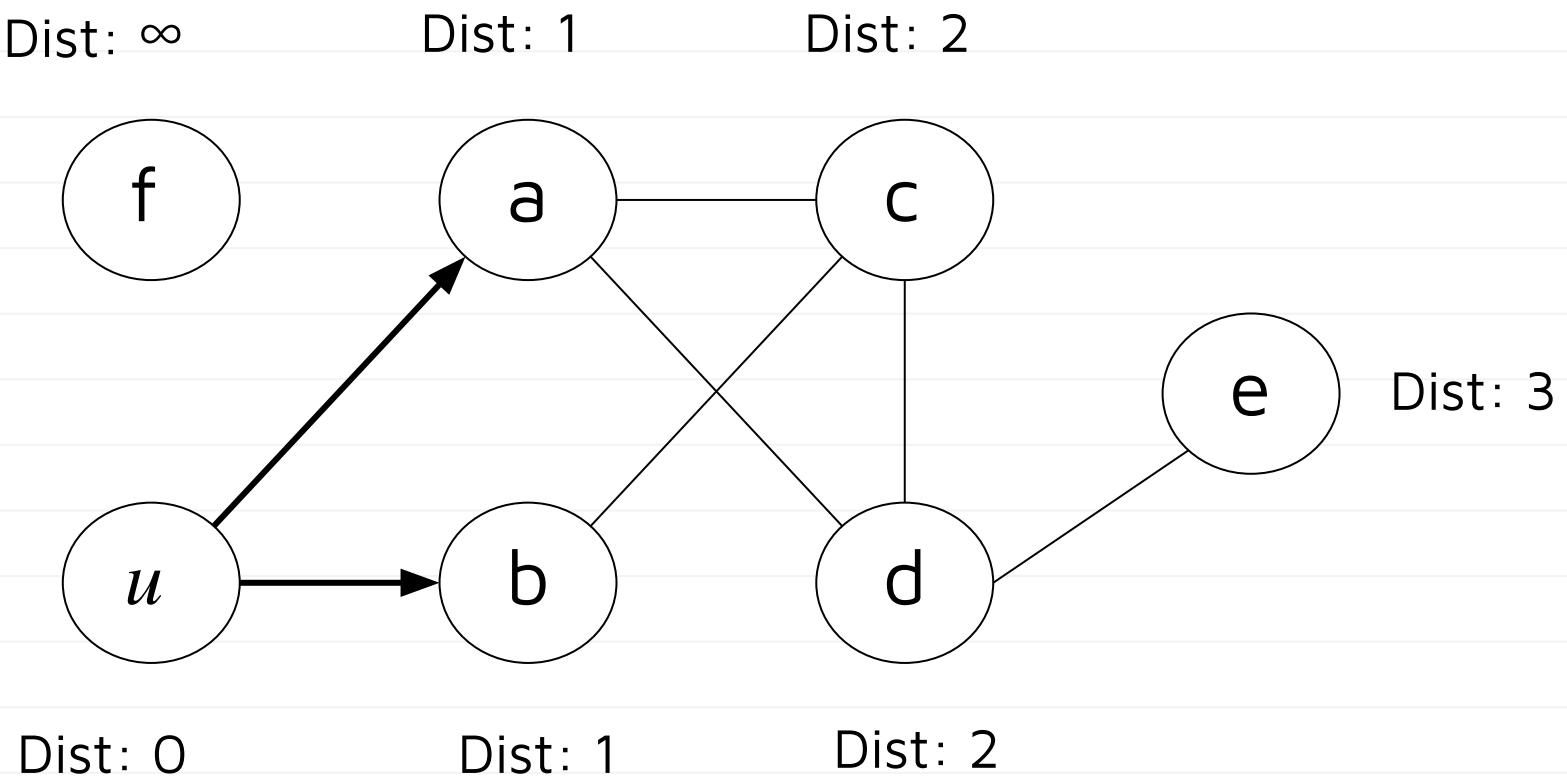
Example



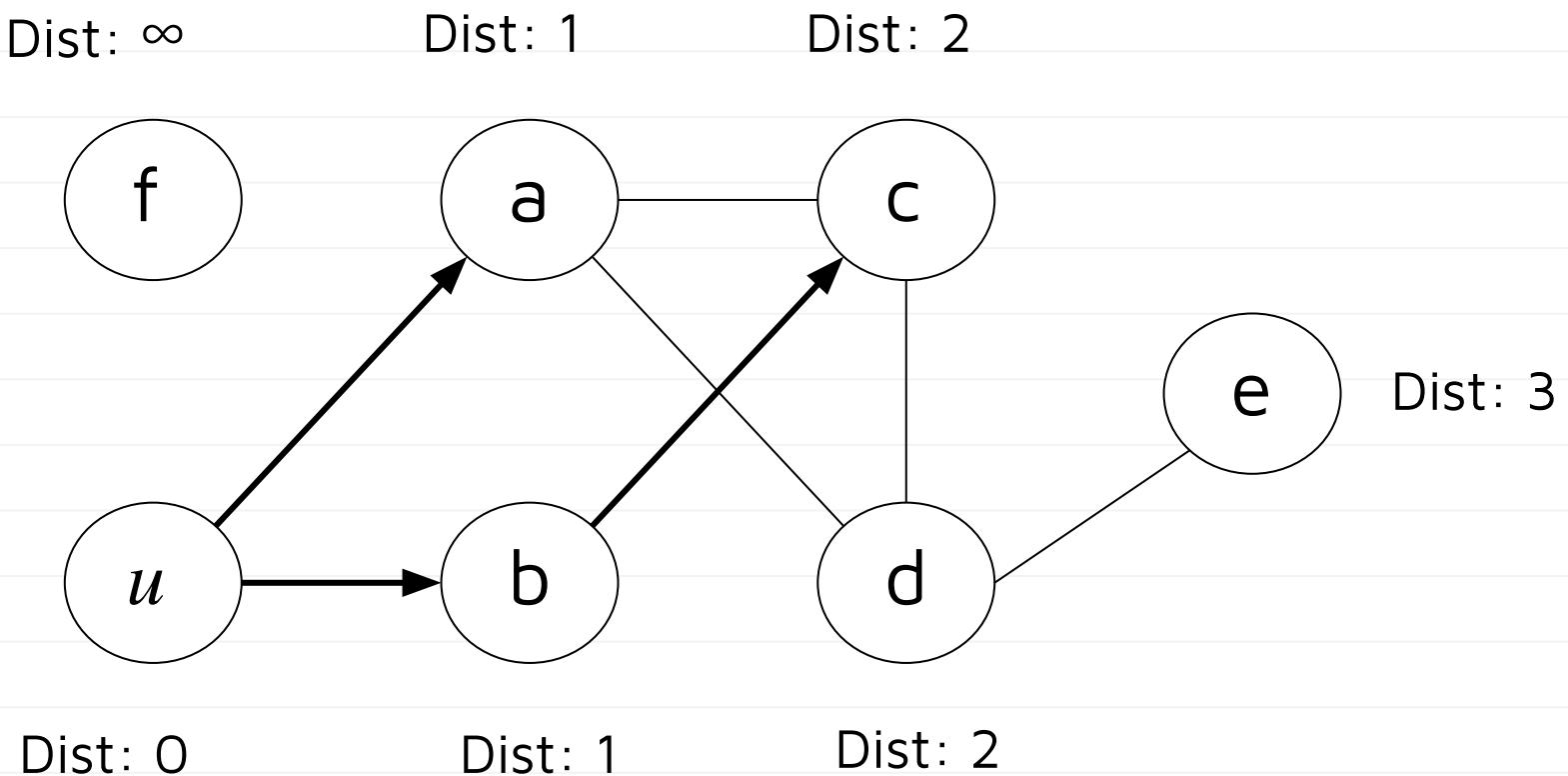
Example



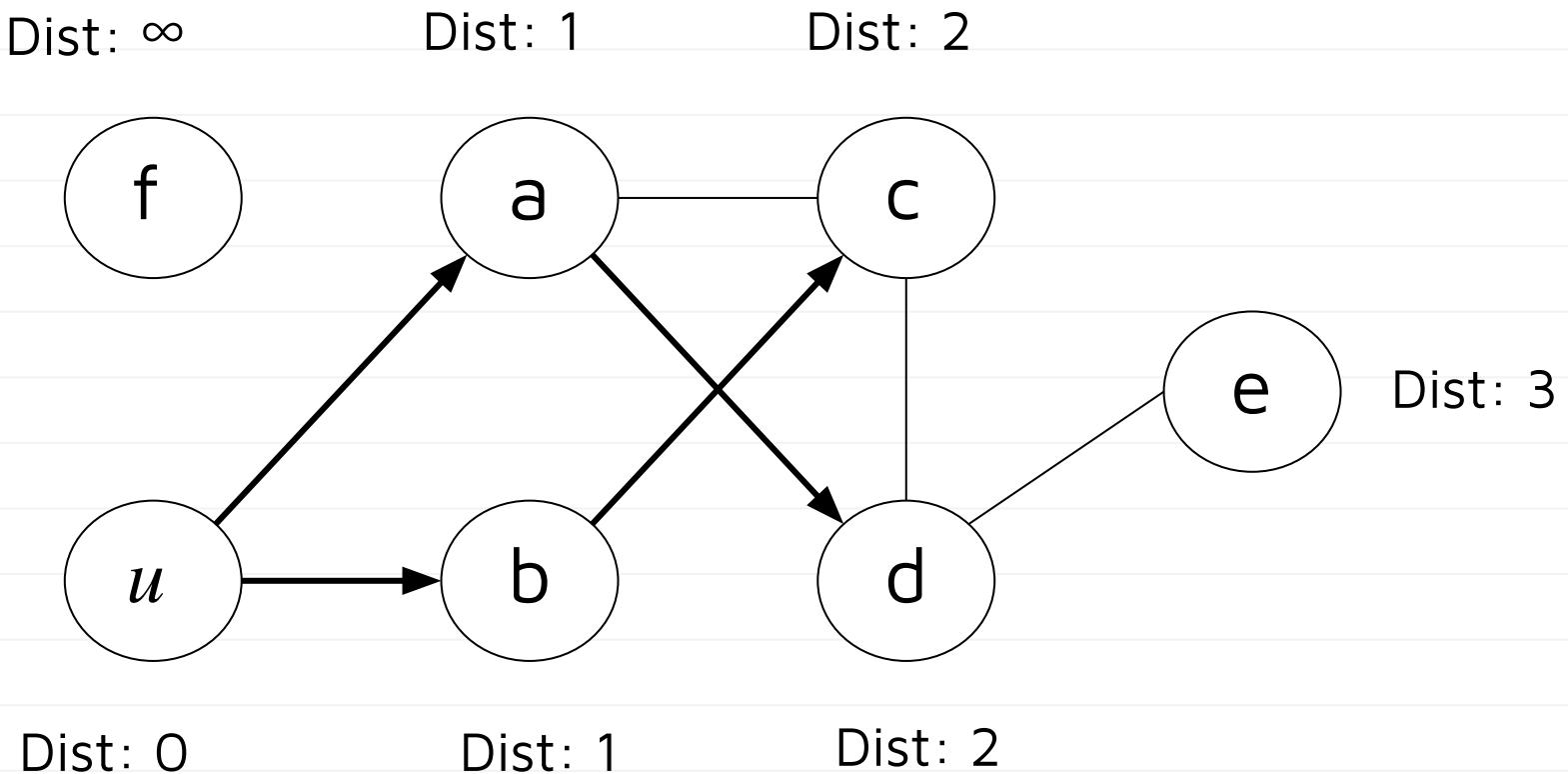
Example



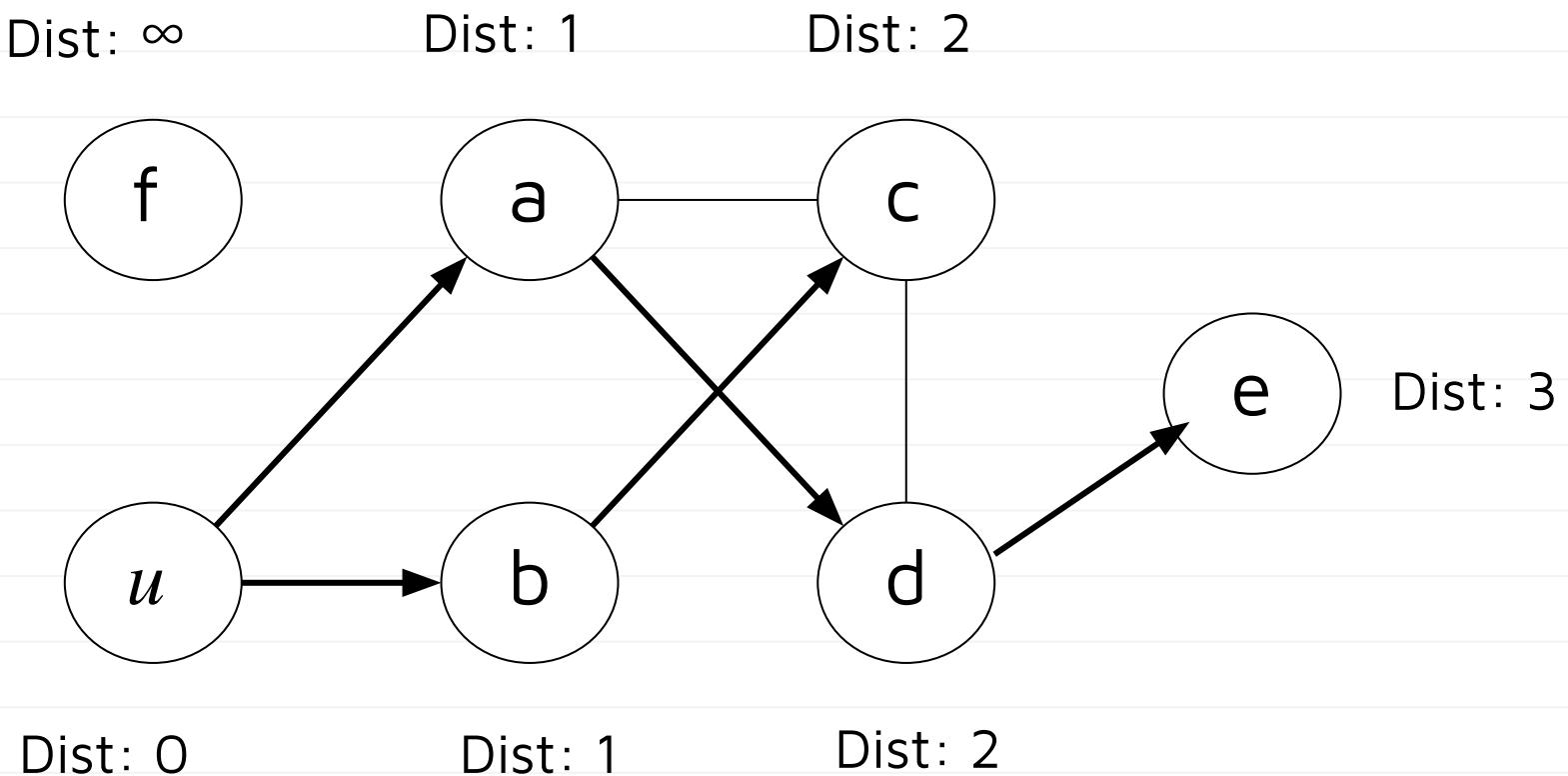
Example



Example



Example



Key Property of Shortest Paths

u

v

- Suppose you have shortest path from u to v .

Key Property of Shortest Paths

- Suppose you have shortest path from u to v .
- Suppose it goes through the edge (x, v) .
 - x is only 1 edge away from v .

Key Property of Shortest Paths

- Suppose you have shortest path from u to v .
- Suppose it goes through the edge (x, v) .
 - x is only 1 edge away from v .
- Then the part of that path from u to x is a **shortest** path.

Key Property, Restated

mic

- A shortest path of length k is composed of:
 - A **shortest path** of length $k - 1$
 - Plus one edge

Question

Node v has three neighbors: a , b , and c . The distance from:

- u to a is 5.
- u to b is 3.
- u to c is 7.

A: 6

B: 3

C: 4

D: 8

E: Not enough info

Node v has three neighbors: a , b , and c . The distance from:

- u to a is 5.
- u to b is 3.
- u to c is 7.

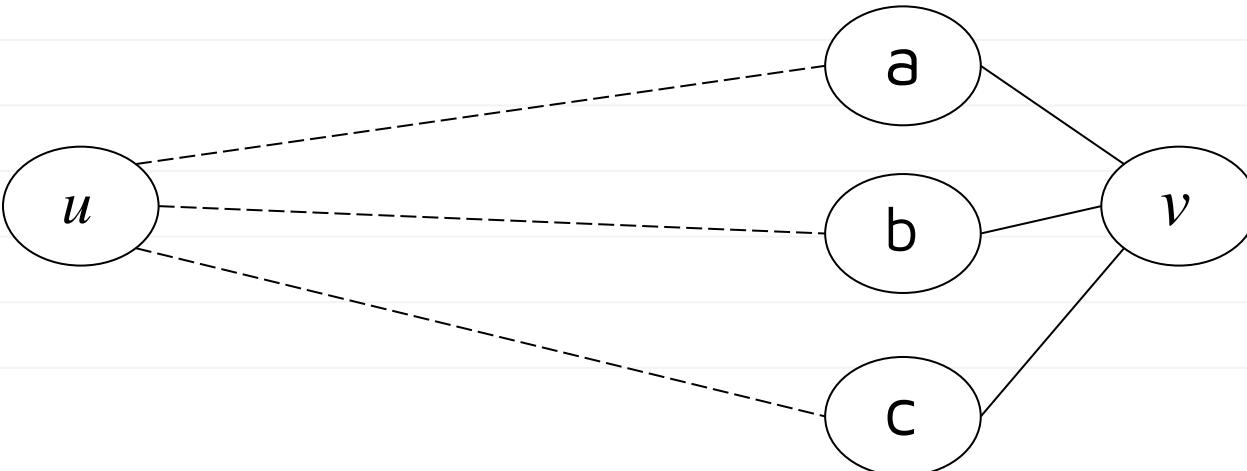
What is the distance from u to v ?



Node v has three neighbors: a , b , and c . The distance from:

- u to a is 5.
- u to b is 3.
- u to c is 7.

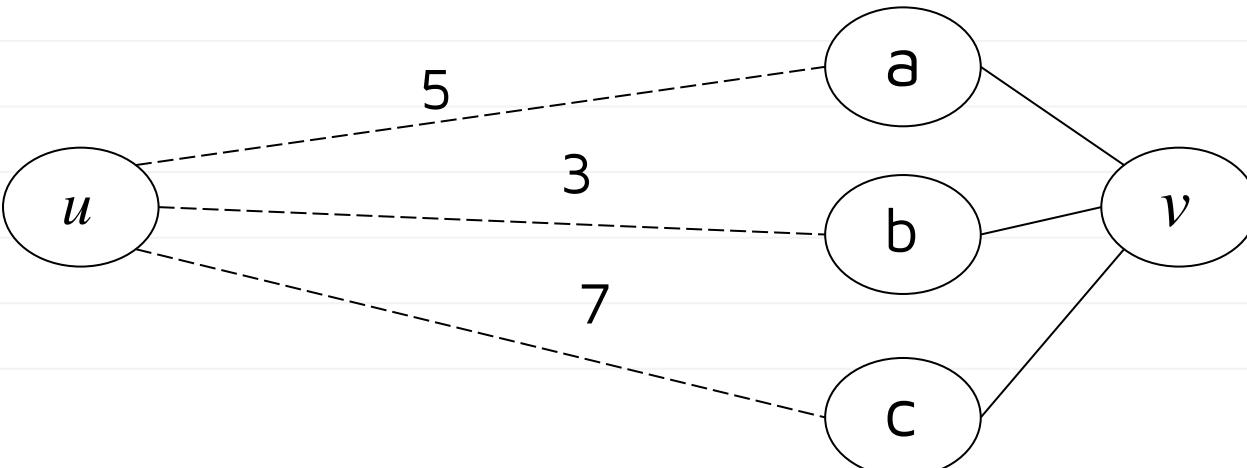
What is the distance from u to v ?



Node v has three neighbors: a , b , and c . The distance from:

- u to a is 5.
- u to b is 3.
- u to c is 7.

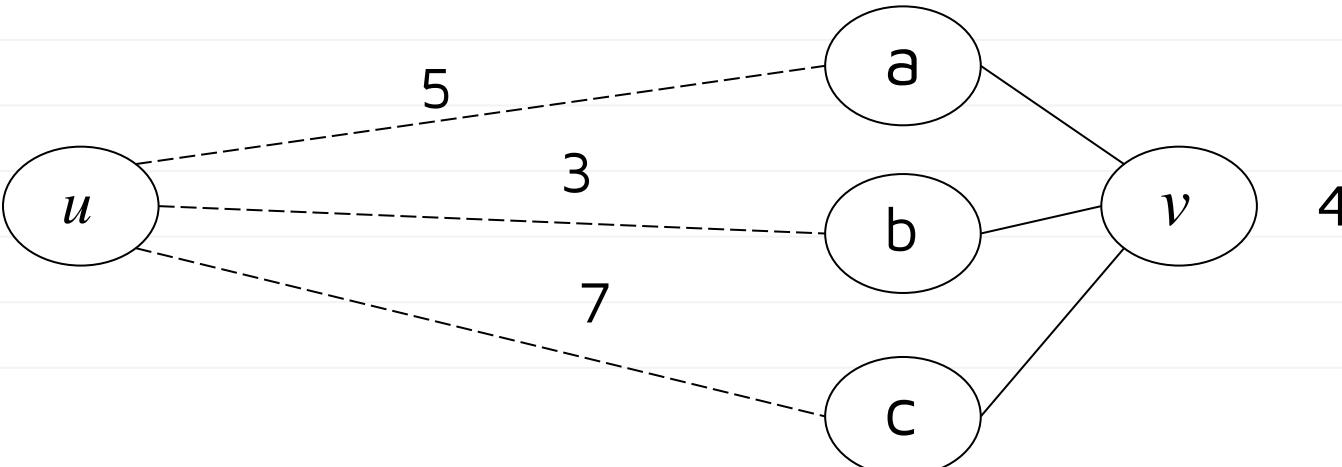
What is the distance from u to v ?



Node v has three neighbors: a , b , and c . The distance from:

- u to a is 5.
- u to b is 3.
- u to c is 7.

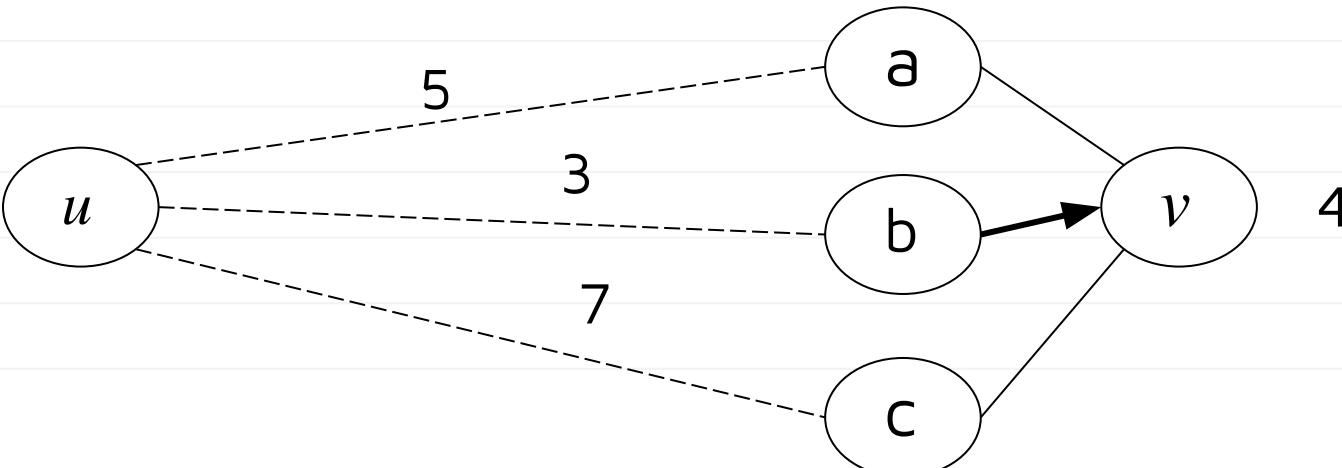
What is the distance from u to v ?



Node v has three neighbors: a , b , and c . The distance from:

- u to a is 5.
- u to b is 3.
- u to c is 7.

What is the distance from u to v ?



Algorithm Idea

- Find all nodes *distance 1* from source.
- Use these to find all nodes *distance 2* from source.
- Use these to find all nodes *distance 3* from source.
-

It turns out...

...this is exactly what BFS does.

C C C C C C

A

/ \

B C

— —

D E

\

F

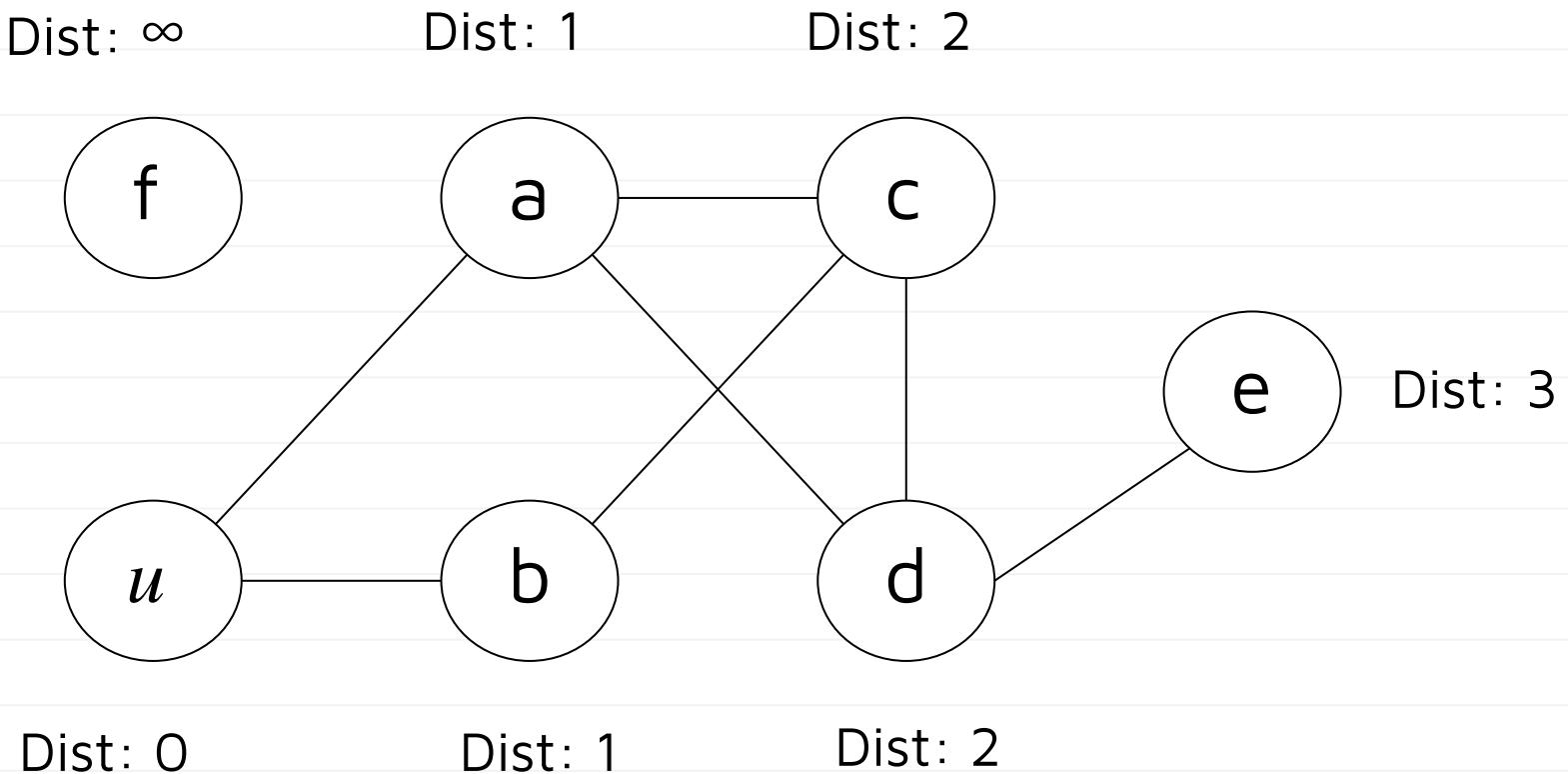
BFS for Shortest Paths

C C C C C C C C C C C C C C C C

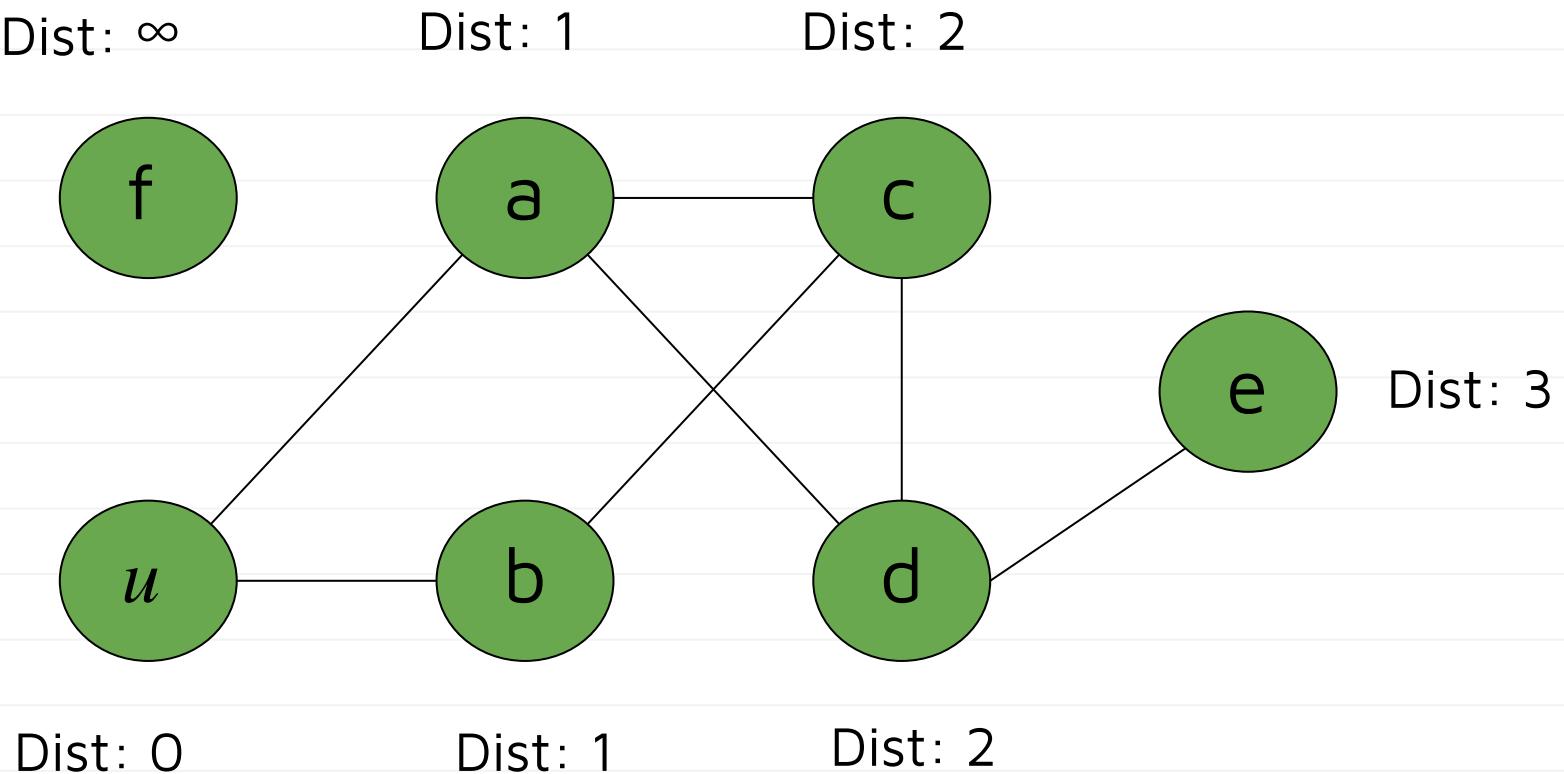
Key Property of BFS

- For any $k \geq 1$ you choose: **#take k = 10**
- All nodes distance $k - 1$ (**9**) from source are added to the queue before any node of distance k (**10**).
- Therefore, nodes are “processed” (popped from queue) in **order of distance** from source.

Example



Example



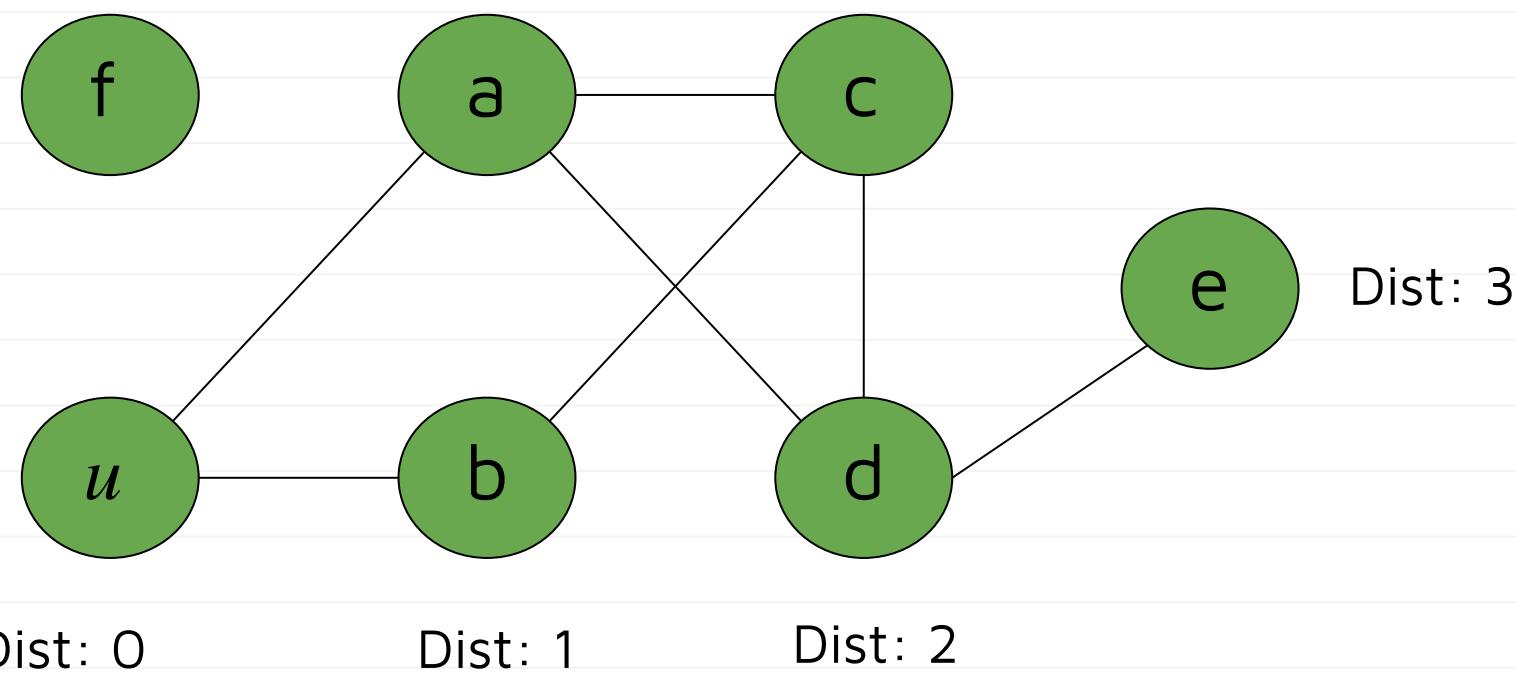
Example

[]

Dist: ∞

Dist: 1

Dist: 2



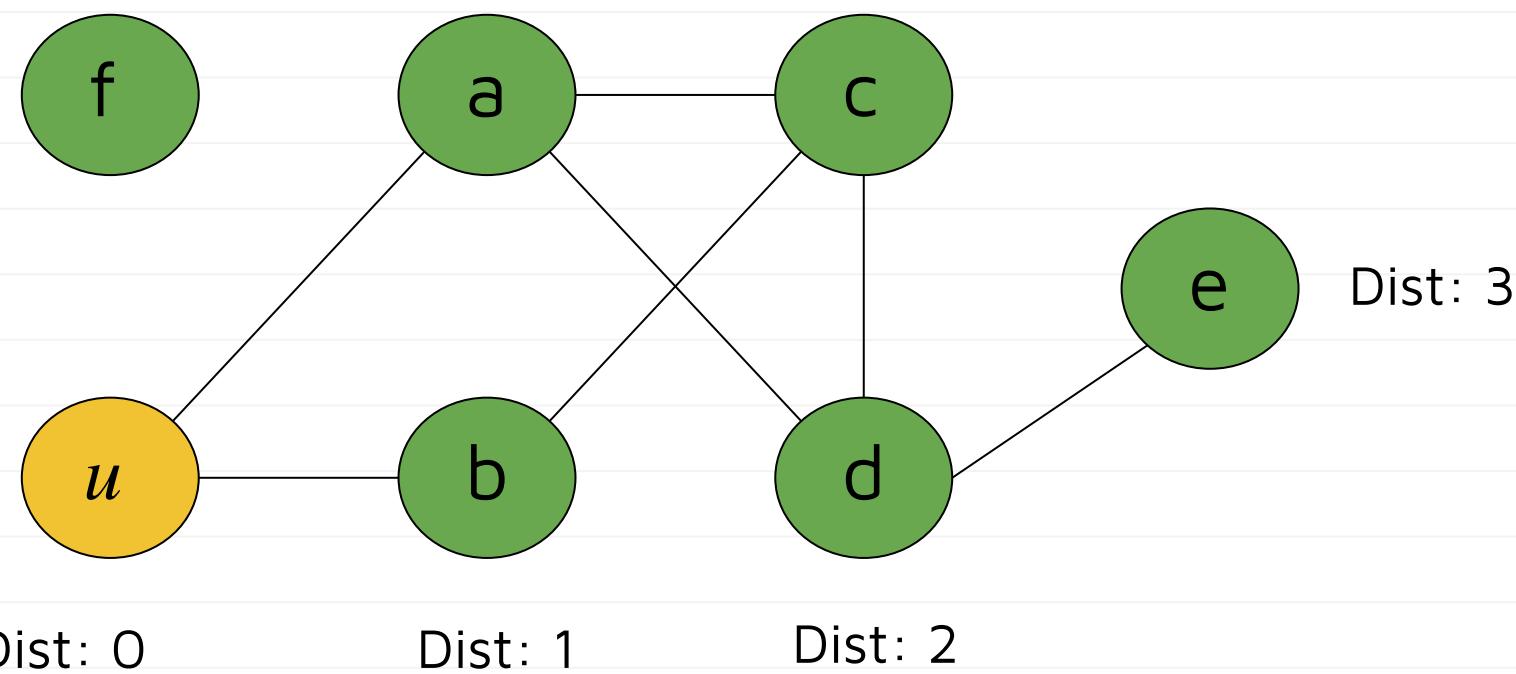
Example

$[u(0)]$

Dist: ∞

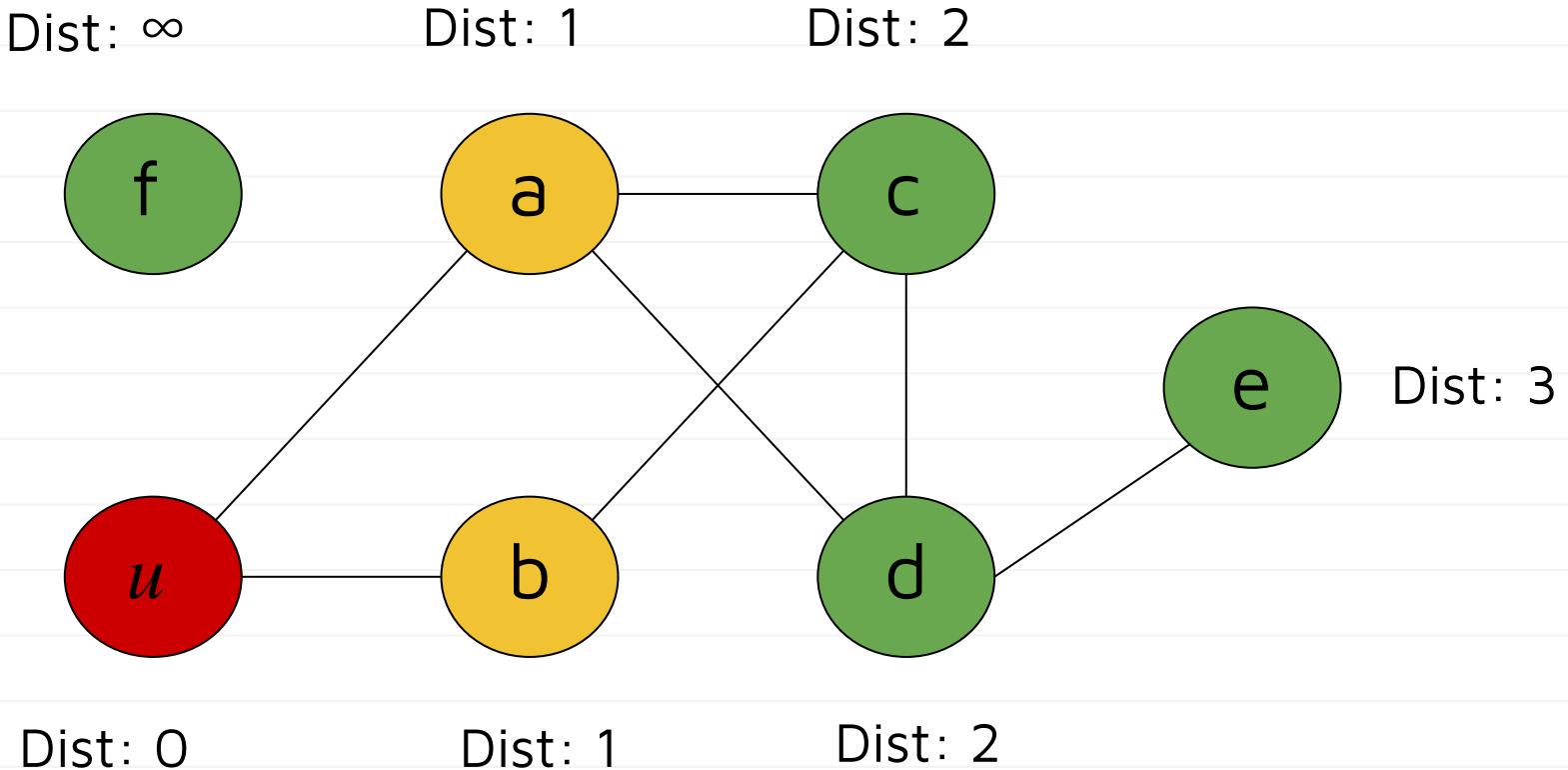
Dist: 1

Dist: 2



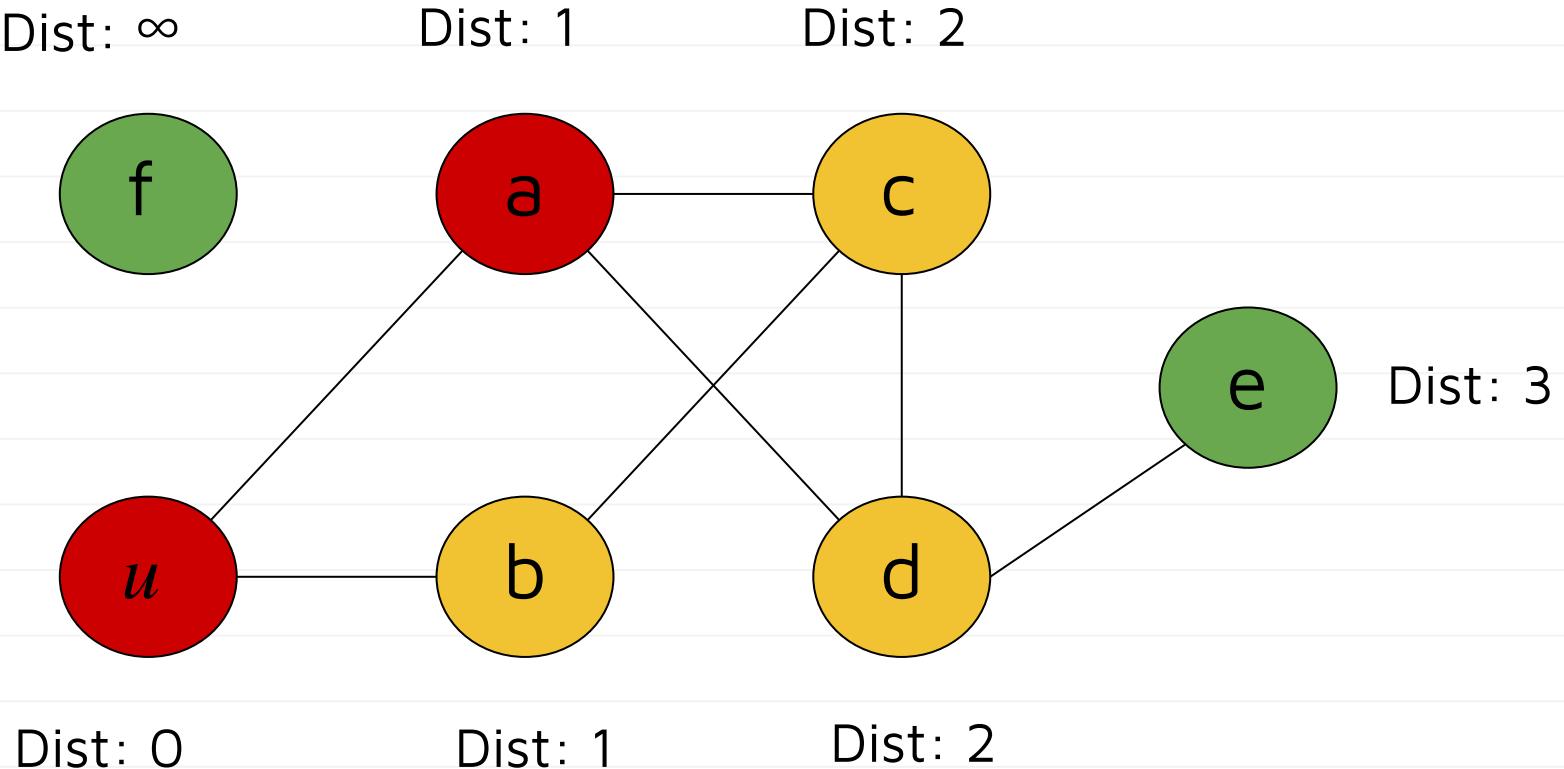
Example

[~~$u(\theta)$~~ , $a(1)$, $b(1)$]



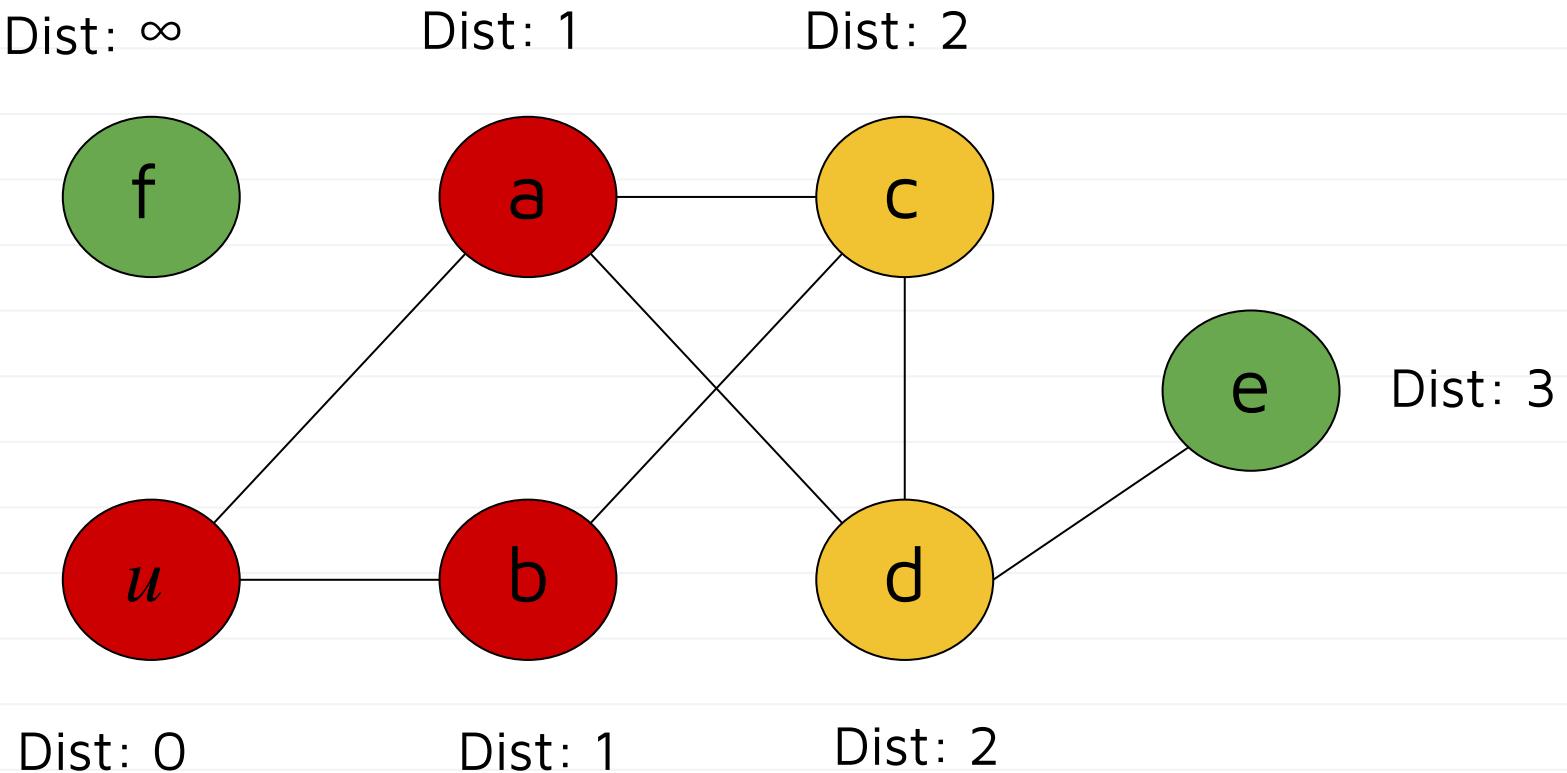
Example

[~~$u(0)$~~ , ~~$a(1)$~~ , $b(1)$, $c(2)$, $d(2)$]



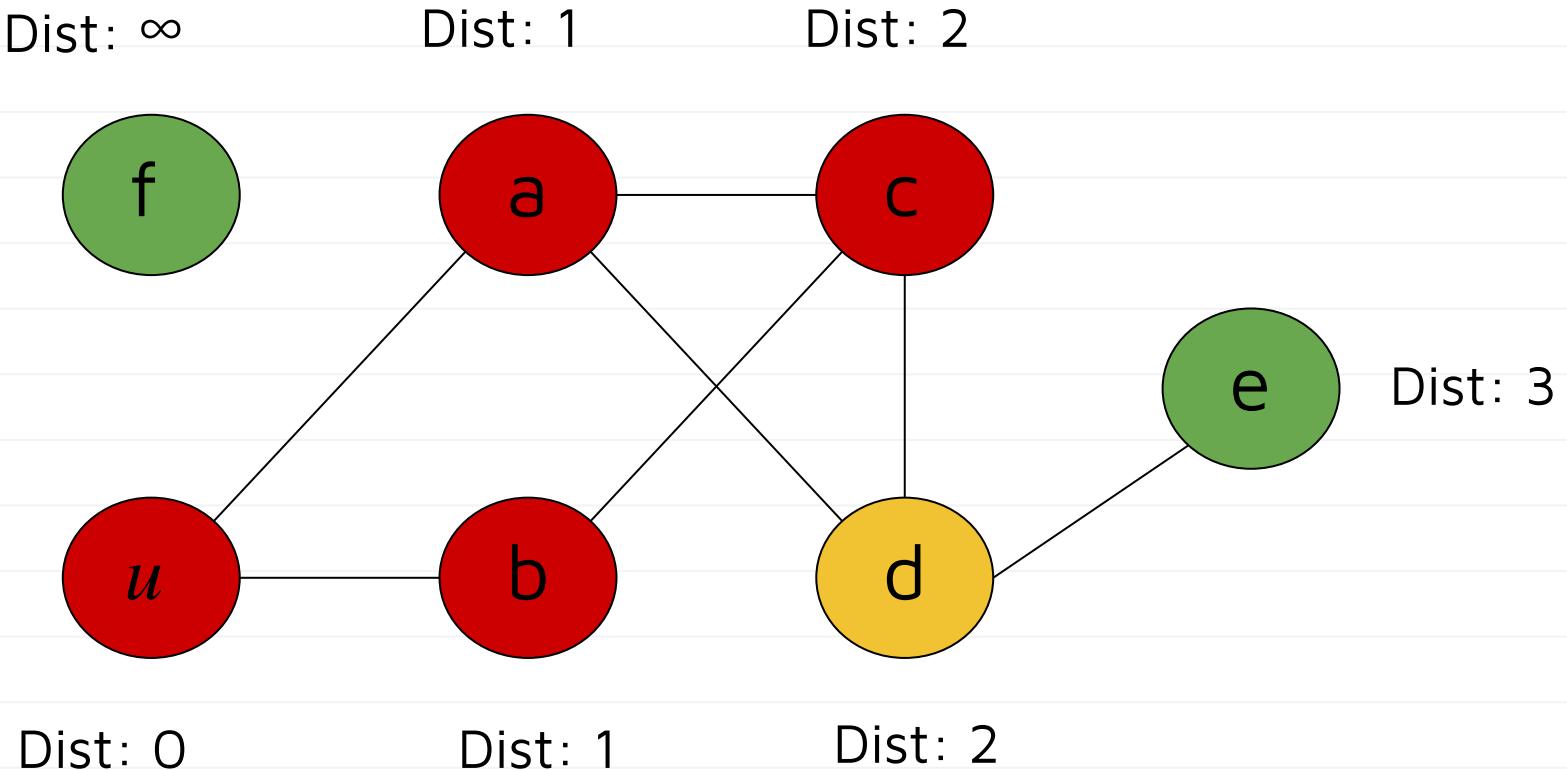
Example

[~~$u(0)$~~ , ~~$a(1)$~~ , ~~$b(1)$~~ , $c(2)$, $d(2)$]



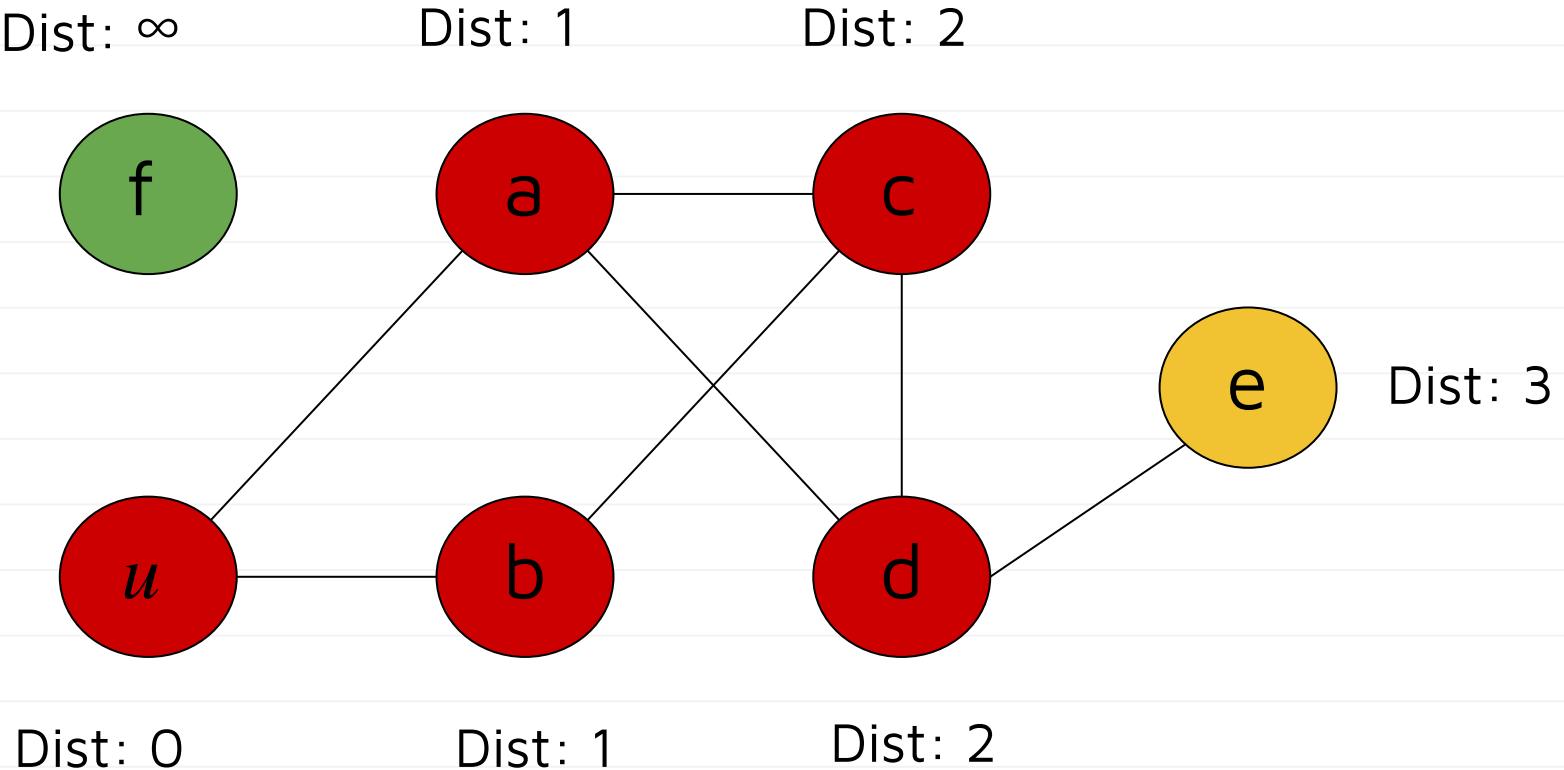
Example

[~~$u(0)$~~ , ~~$a(1)$~~ , ~~$b(1)$~~ , ~~$c(2)$~~ , $d(2)$]



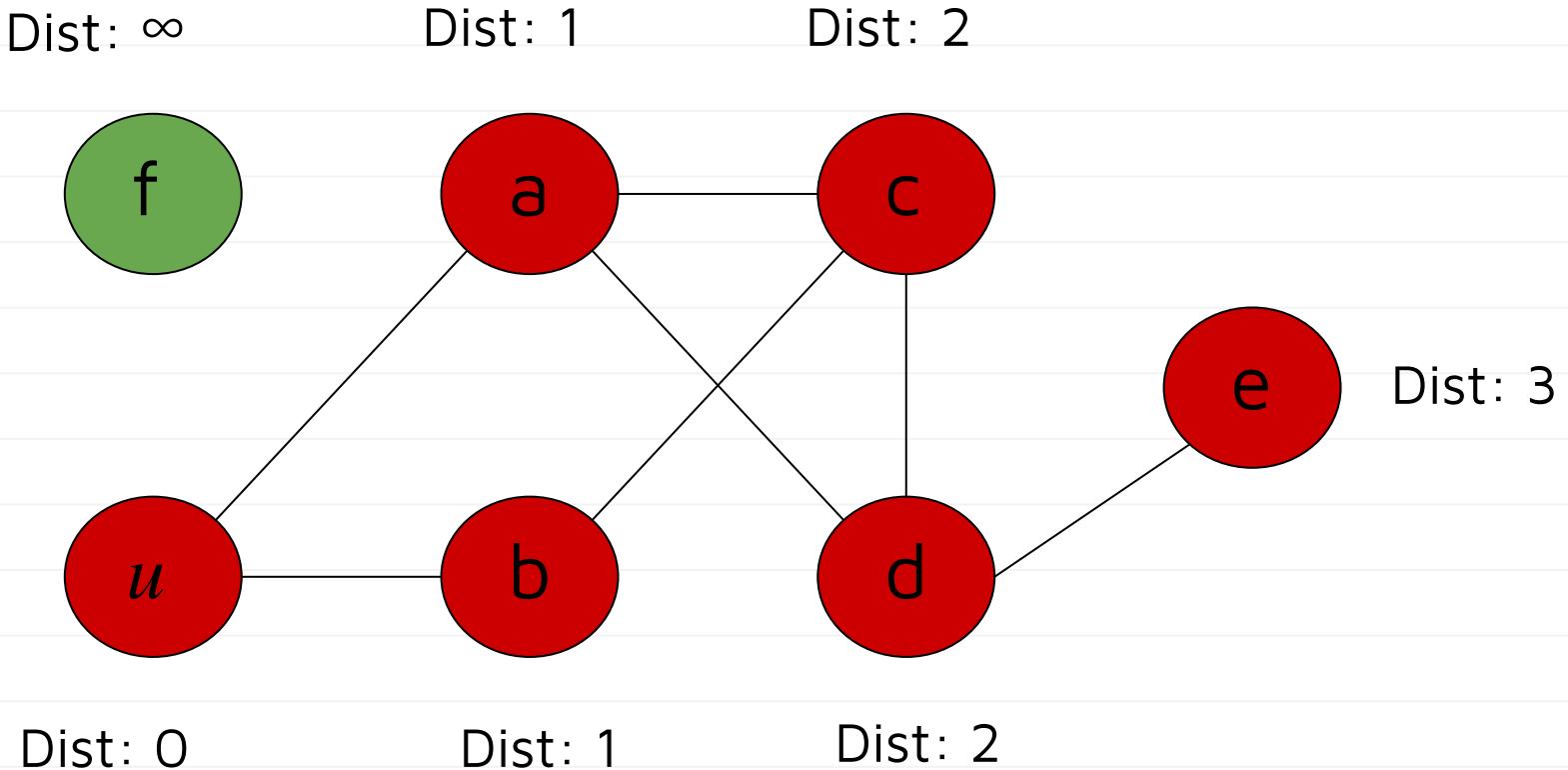
Example

[~~$u(0)$~~ , ~~$a(1)$~~ , ~~$b(1)$~~ , ~~$c(2)$~~ , ~~$d(2)$~~ , $e(3)$]



Example

[~~$u(0)$~~ , ~~$a(1)$~~ , ~~$b(1)$~~ , ~~$c(2)$~~ , ~~$d(2)$~~ , ~~$e(3)$~~]



Discovering Shortest Paths

- We “discover” shortest paths when we pop a node from queue and look at its neighbors.
- But the neighbor’s status matters!

Consider This

- We pop a node s .
- It has a neighbor v whose status is **undiscovered**.
- We've discovered a **shortest path** to v through s !

Consider This

- We pop a node s .
- It has a neighbor v whose status is **pending** or **visited**.
- We already have a shortest path to v .

Modifying BFS

- Use BFS “framework”.
- Return dictionary of **search predecessors**.
 - If v is discovered while visiting u , we say that u is the **BFS predecessor** of v .
 - This encodes the shortest paths.
- Also return dictionary of shortest path distances.

```
def bfs_shortest_path(graph, source):
    """Start a BFS at `source`."""
    status = {node: 'undiscovered' for node in graph.nodes}
    distance = {node: float('inf') for node in graph.nodes}
    predecessor = {node: None for node in graph.nodes}

    status[source] = 'pending'
    distance[source] = 0
    pending = deque([source])

    # while there are still pending nodes
    while pending:
        u = pending.popleft() #remove the first elem
        for v in graph.neighbors(u):
            if status[v] == 'undiscovered':
                status[v] = 'pending'
                distance[v] = distance[u] + 1
                predecessor[v] = u
                pending.append(v)
        status[u] == 'visited'
    return predecessor, distance
```

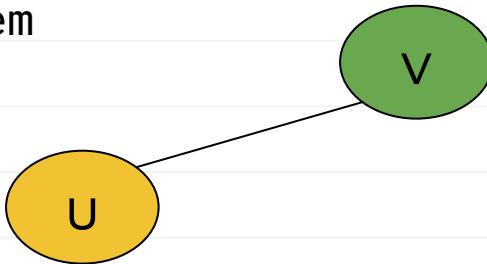
```

def bfs_shortest_path(graph, source):
    """Start a BFS at `source`."""
    status = {node: 'undiscovered' for node in graph.nodes}
    distance = {node: float('inf') for node in graph.nodes}
    predecessor = {node: None for node in graph.nodes}

    status[source] = 'pending'
    distance[source] = 0
    pending = deque([source])

    # while there are still pending nodes
    while pending:
        u = pending.popleft() #remove the first elem
        for v in graph.neighbors(u):
            if status[v] == 'undiscovered':
                status[v] = 'pending'
                distance[v] = distance[u] + 1
                predecessor[v] = u
                pending.append(v)
        status[u] == 'visited'
    return predecessor, distance

```



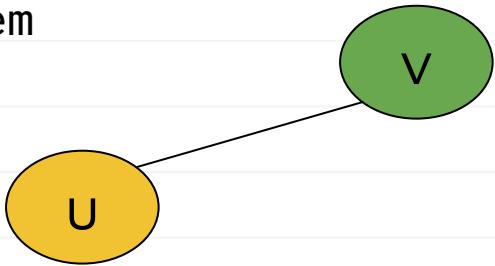
```

def bfs_shortest_path(graph, source):
    """Start a BFS at `source`."""
    status = {node: 'undiscovered' for node in graph.nodes}
    distance = {node: float('inf') for node in graph.nodes}
    predecessor = {node: None for node in graph.nodes}

    status[source] = 'pending'
    distance[source] = 0
    pending = deque([source])

    # while there are still pending nodes
    while pending:
        u = pending.popleft() #remove the first elem
        for v in graph.neighbors(u):
            if status[v] == 'undiscovered':
                status[v] = 'pending'
                distance[v] = distance[u] + 1
                predecessor[v] = u
                pending.append(v)
        status[u] == 'visited'
    return predecessor, distance

```



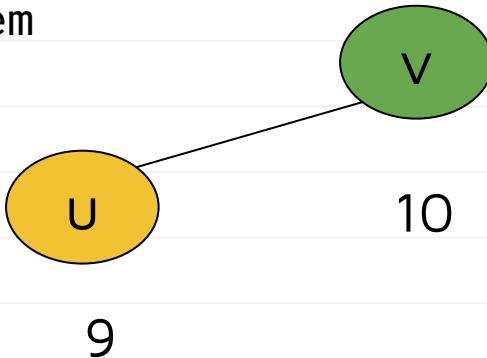
```

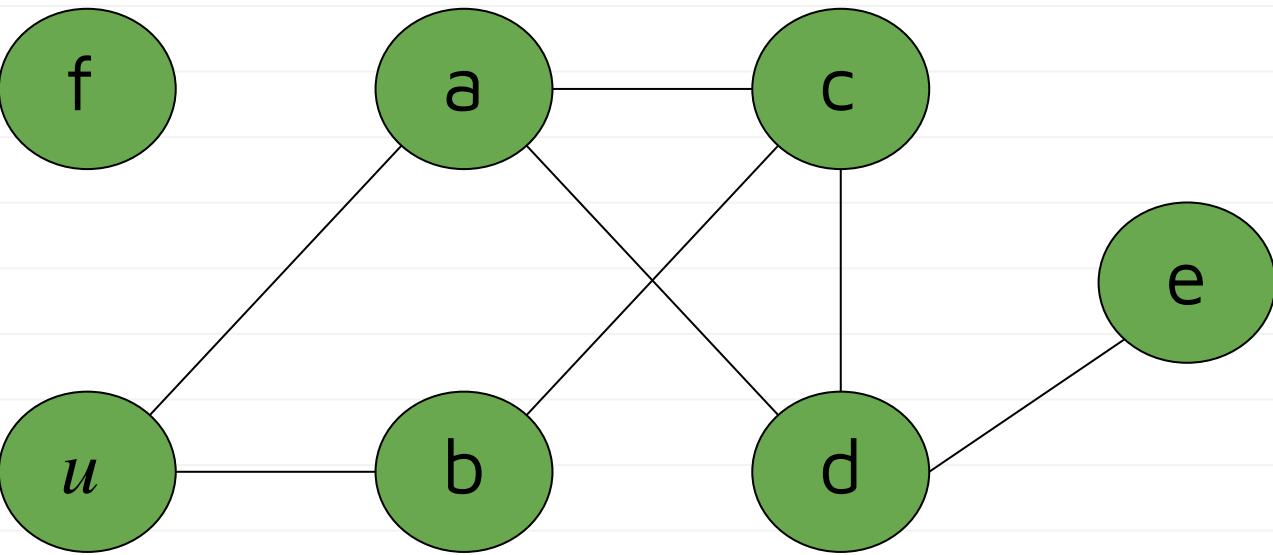
def bfs_shortest_path(graph, source):
    """Start a BFS at `source`."""
    status = {node: 'undiscovered' for node in graph.nodes}
    distance = {node: float('inf') for node in graph.nodes}
    predecessor = {node: None for node in graph.nodes}

    status[source] = 'pending'
    distance[source] = 0
    pending = deque([source])

    # while there are still pending nodes
    while pending:
        u = pending.popleft() #remove the first elem
        for v in graph.neighbors(u):
            if status[v] == 'undiscovered':
                status[v] = 'pending'
                distance[v] = distance[u] + 1
                predecessor[v] = u
                pending.append(v)
        status[u] == 'visited'
    return predecessor, distance

```



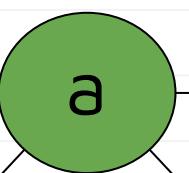
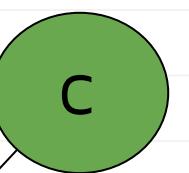
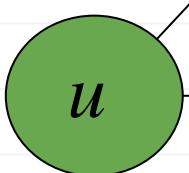
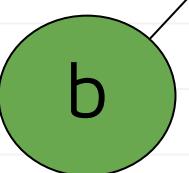
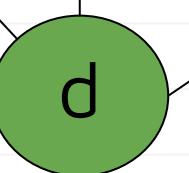
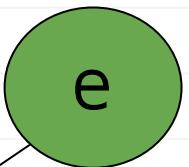


distance = {

Dist: ∞

Dist: ∞

Dist: ∞



Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

distance = {

Dist: ∞

f

Dist: ∞

a

Dist: ∞

c

u

Dist: ∞

b

Dist: ∞

d

Dist: ∞

predec = {

Dist: ∞

e

distance = {

Dist: ∞

f

Dist: ∞

a

Dist: ∞

c

u

Dist: ∞

b

Dist: ∞

d

Dist: ∞

[]

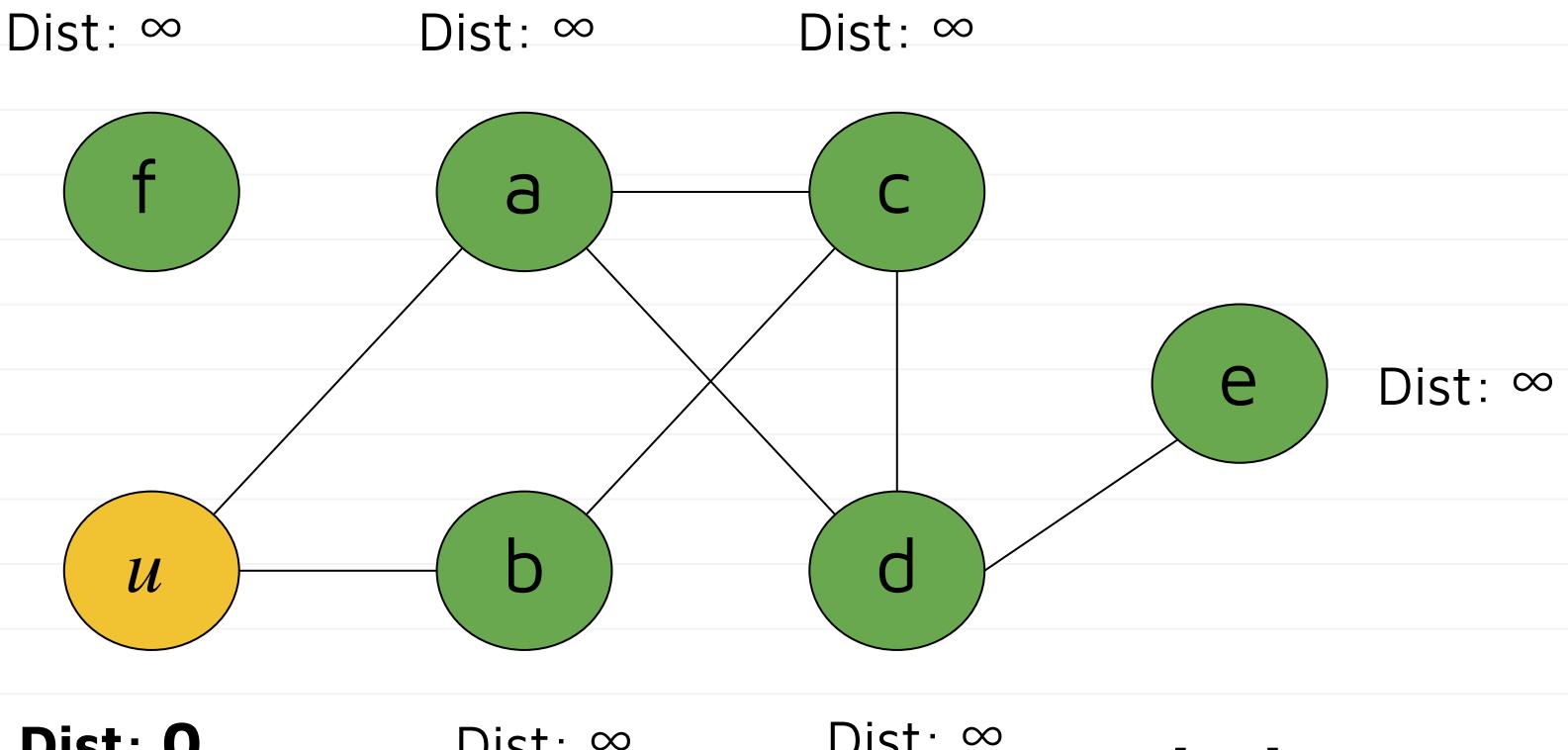
predec = {

Dist: ∞

e

distance = {'u': 0}

predec = {



distance = { 'u': 0 }

predec = { }

Dist: ∞

Dist: ∞

Dist: ∞

Dist: ∞

Dist: 0

Dist: ∞

Dist: ∞

Dist: ∞

[u]

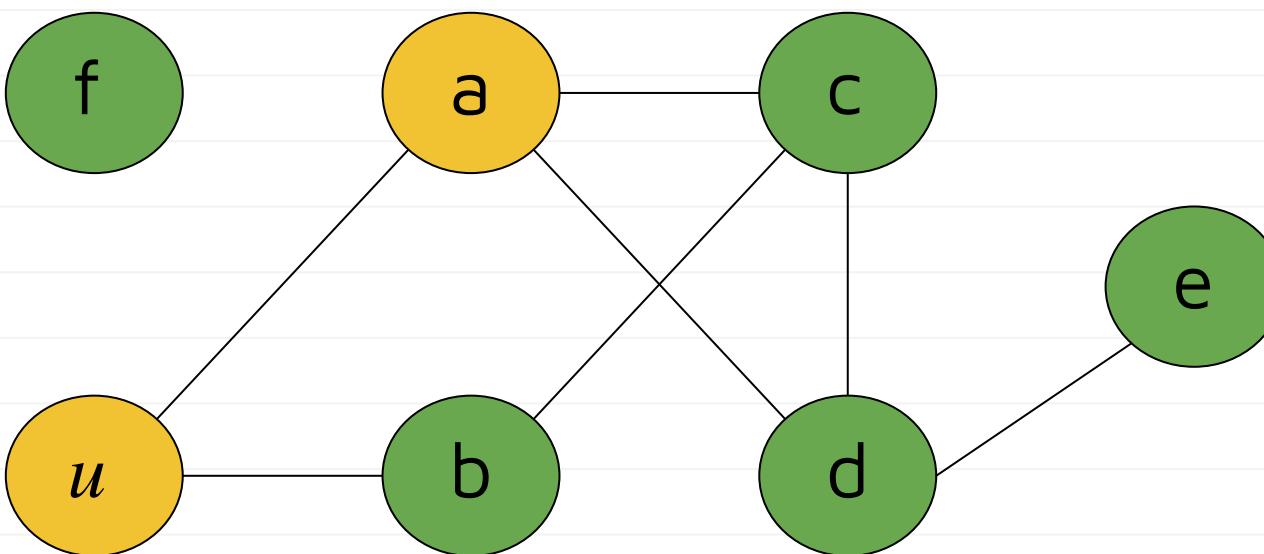
distance = { 'u': 0, 'a': 1

predec = {

Dist: ∞

Dist: 1

Dist: ∞



Dist: 0

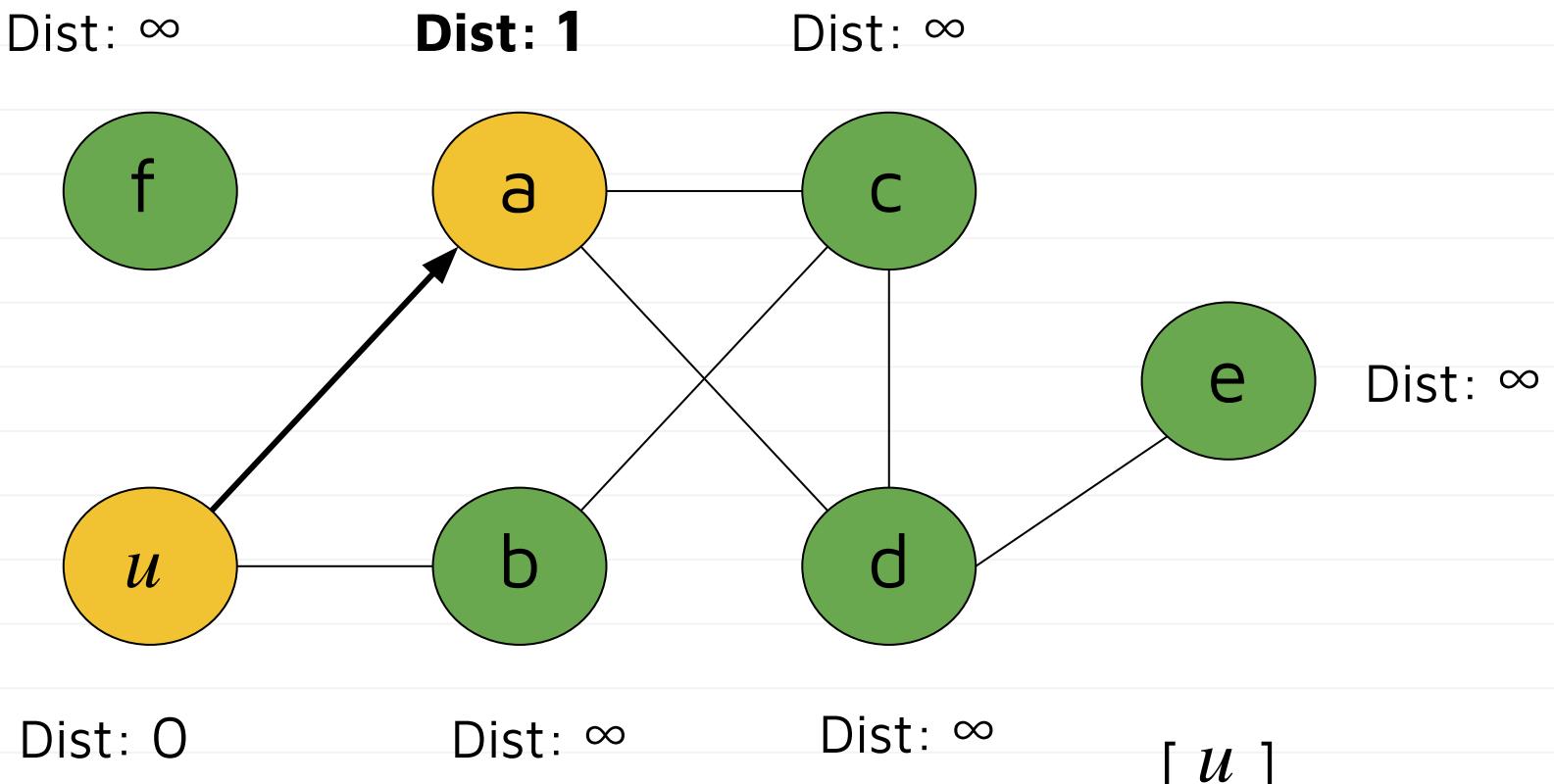
Dist: ∞

Dist: ∞

[u]

distance = { 'u': 0, 'a': 1 }

predec = {'a': 'u'}



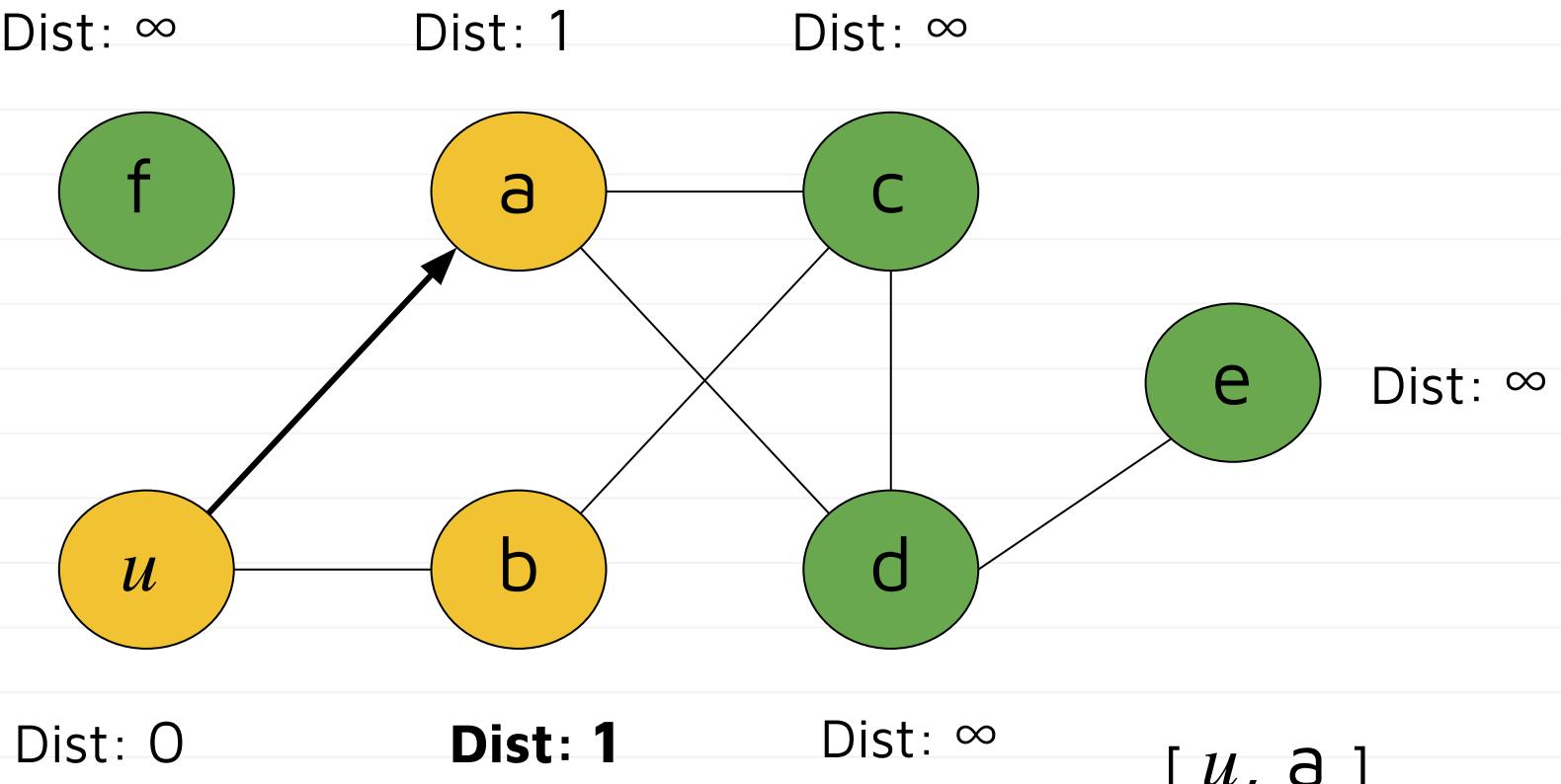
distance = { 'u': 0, 'a': 1 }

predec = {'a': 'u'}



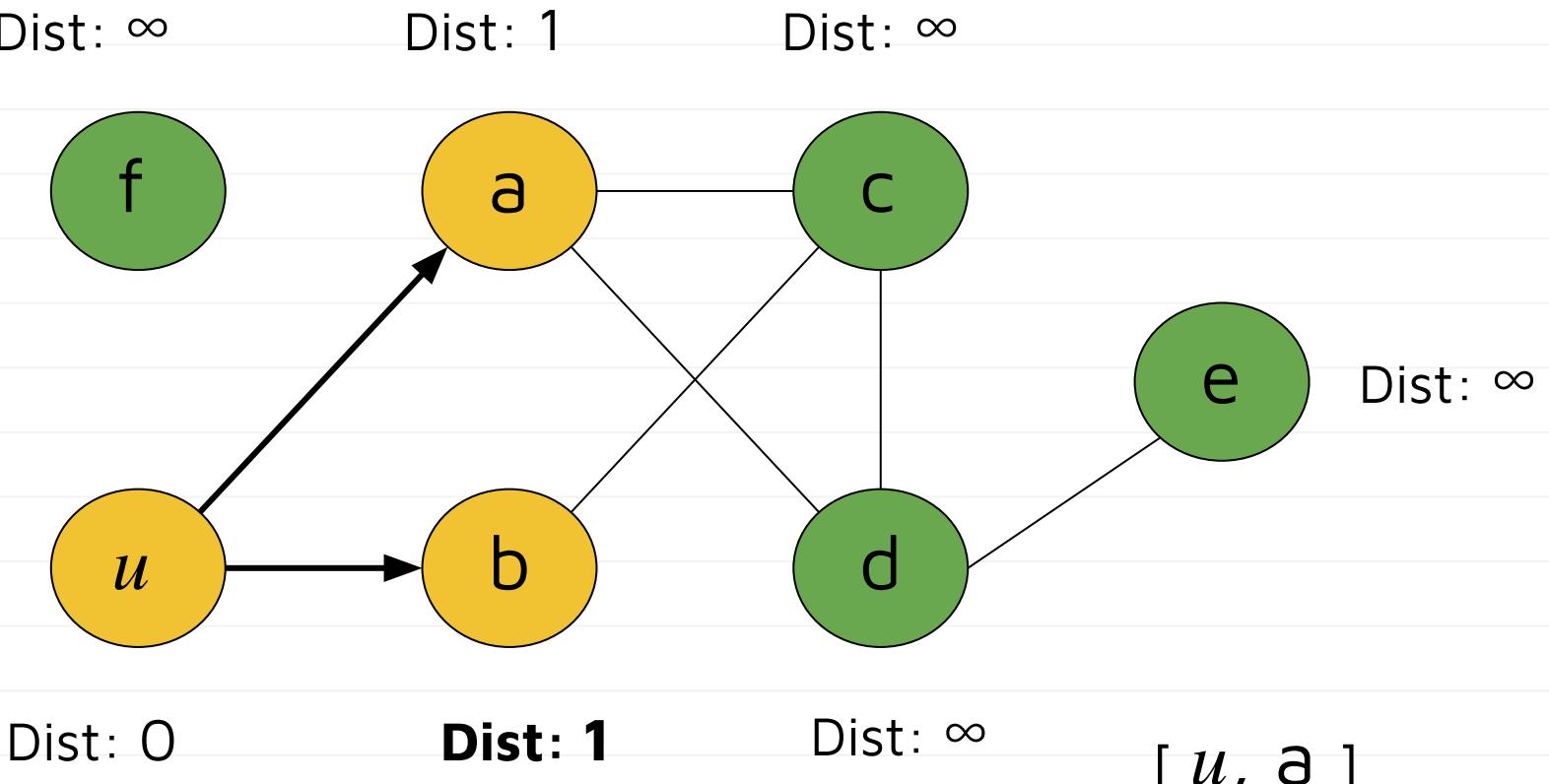
distance = { 'u': 0, 'a': 1, 'b': 1 }

predec = {'a': 'u'



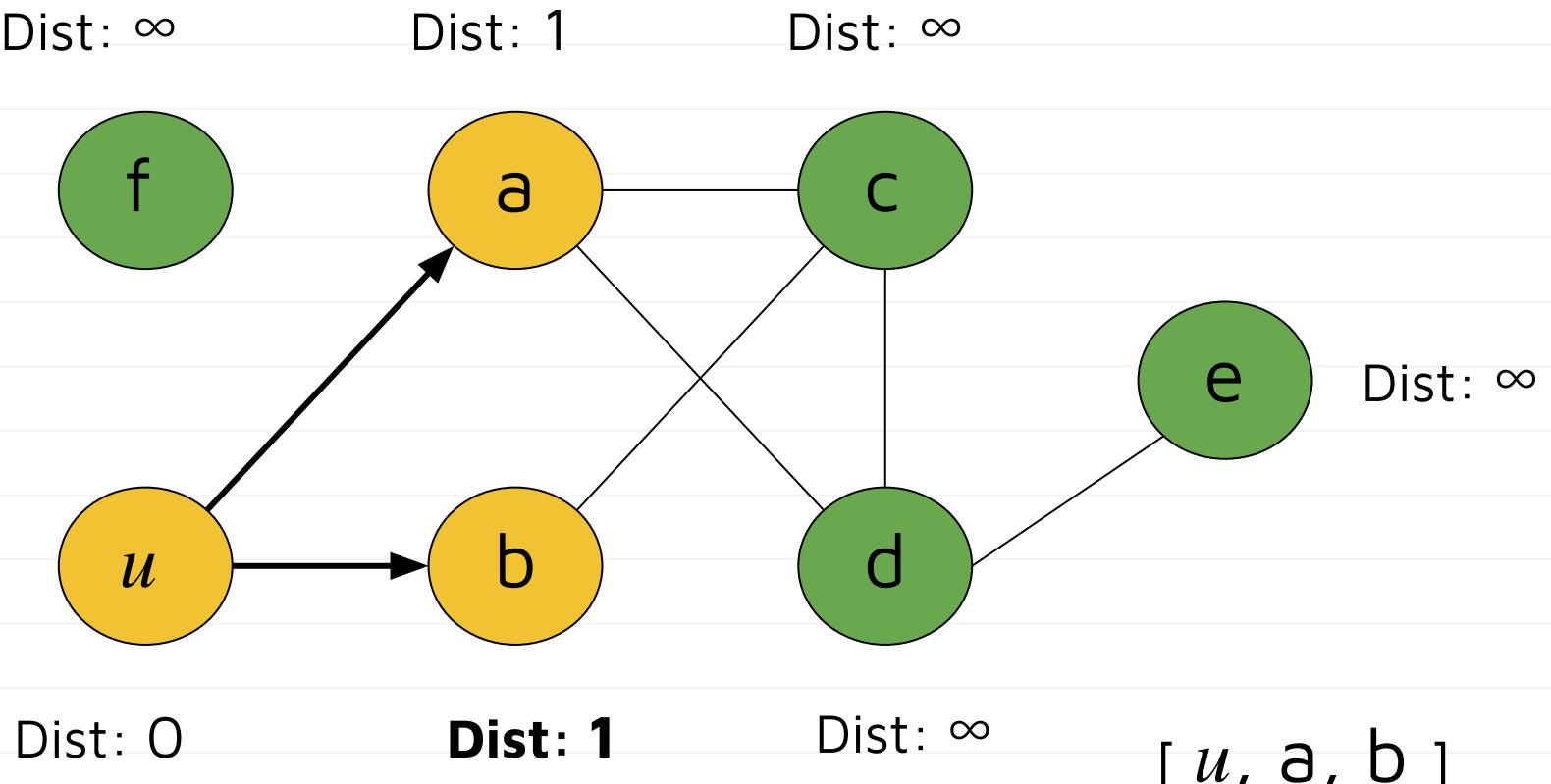
distance = { 'u': 0, 'a': 1, 'b': 1 }

predec = {'a': 'u', 'b': 'u'}



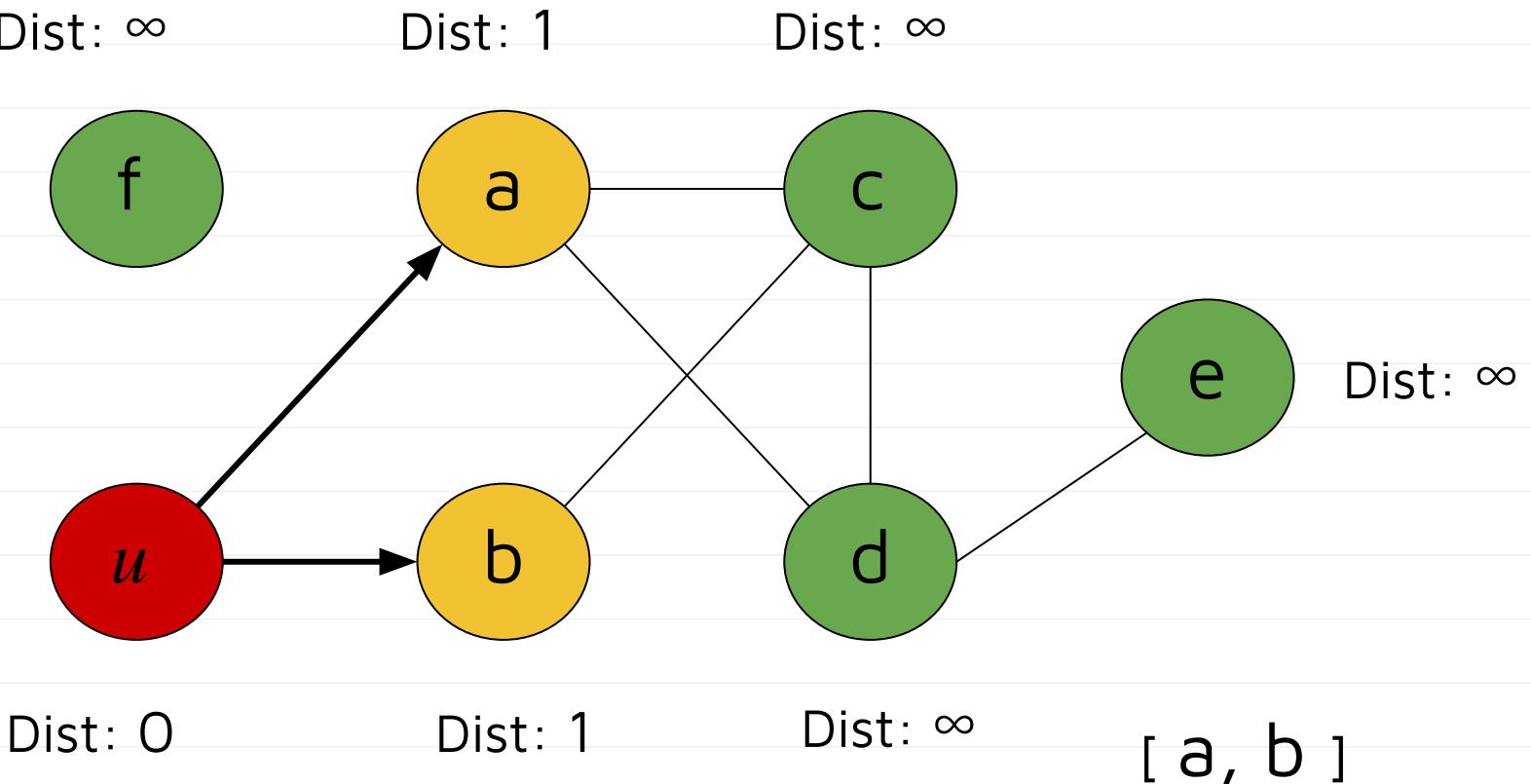
distance = { 'u': 0, 'a': 1, 'b': 1 }

predec = {'a': 'u', 'b': 'u'}



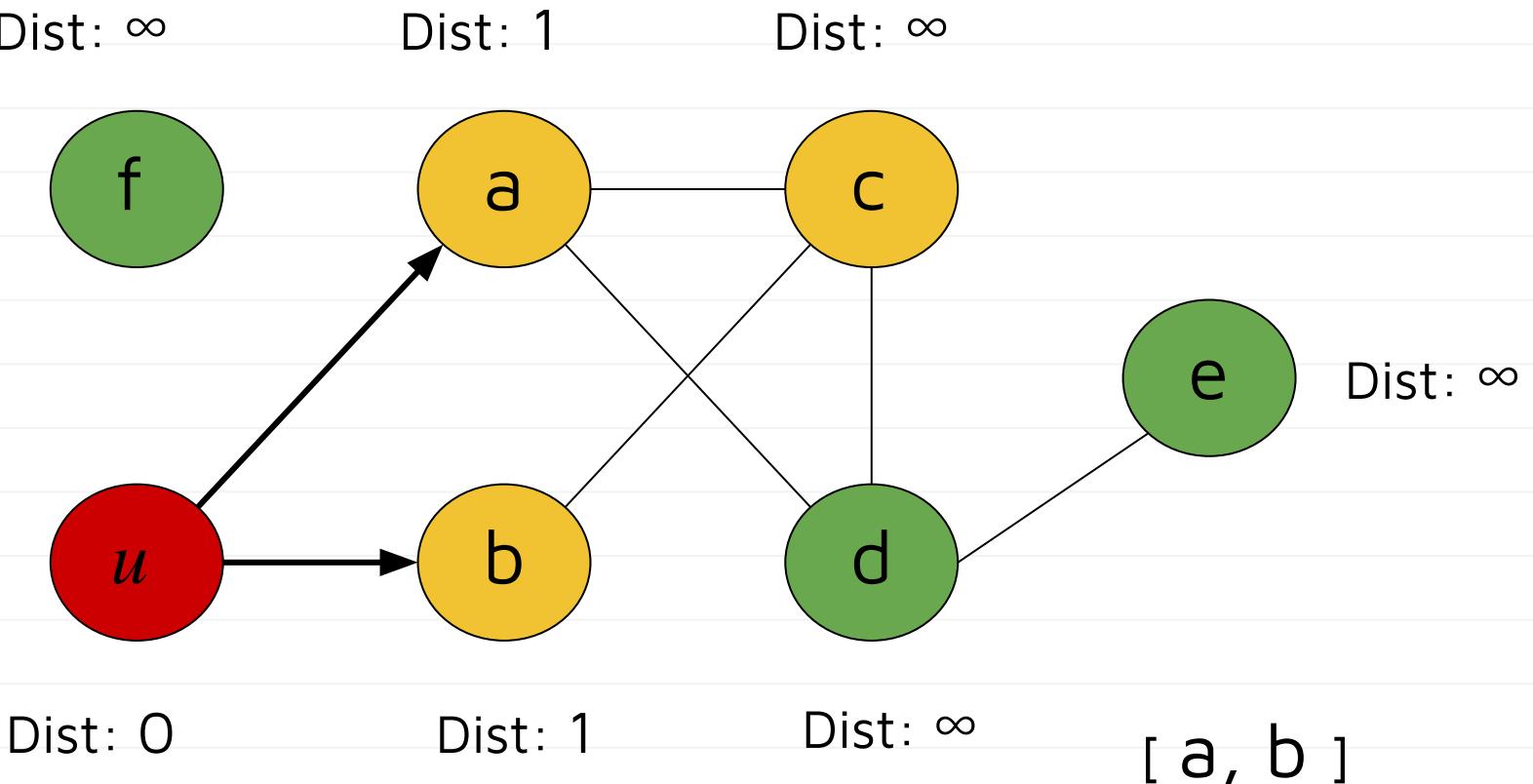
distance = { 'u': 0, 'a': 1, 'b': 1 }

predec = {'a': 'u', 'b': 'u'}



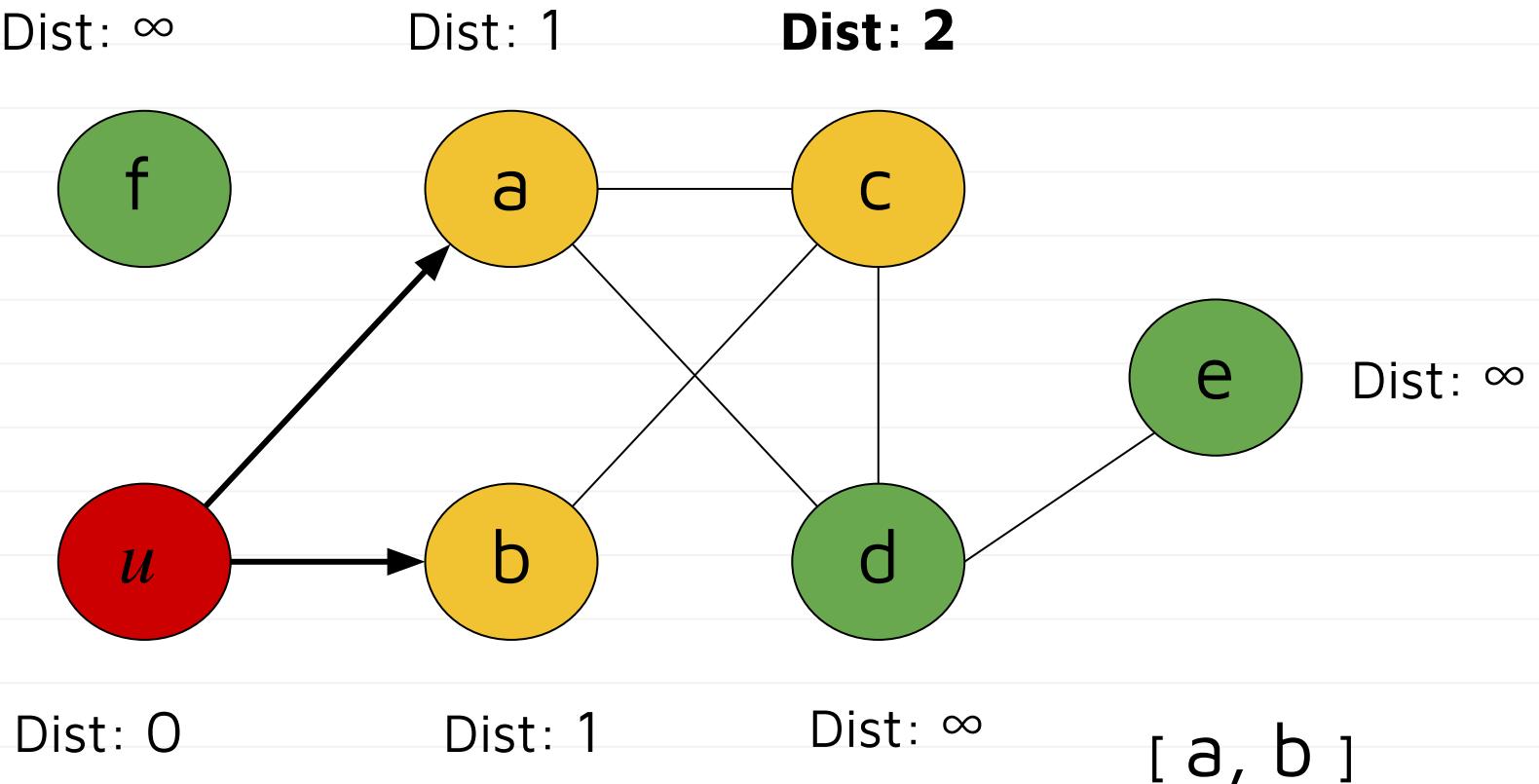
distance = { 'u': 0, 'a': 1, 'b': 1 }

predec = {'a': 'u', 'b': 'u'}



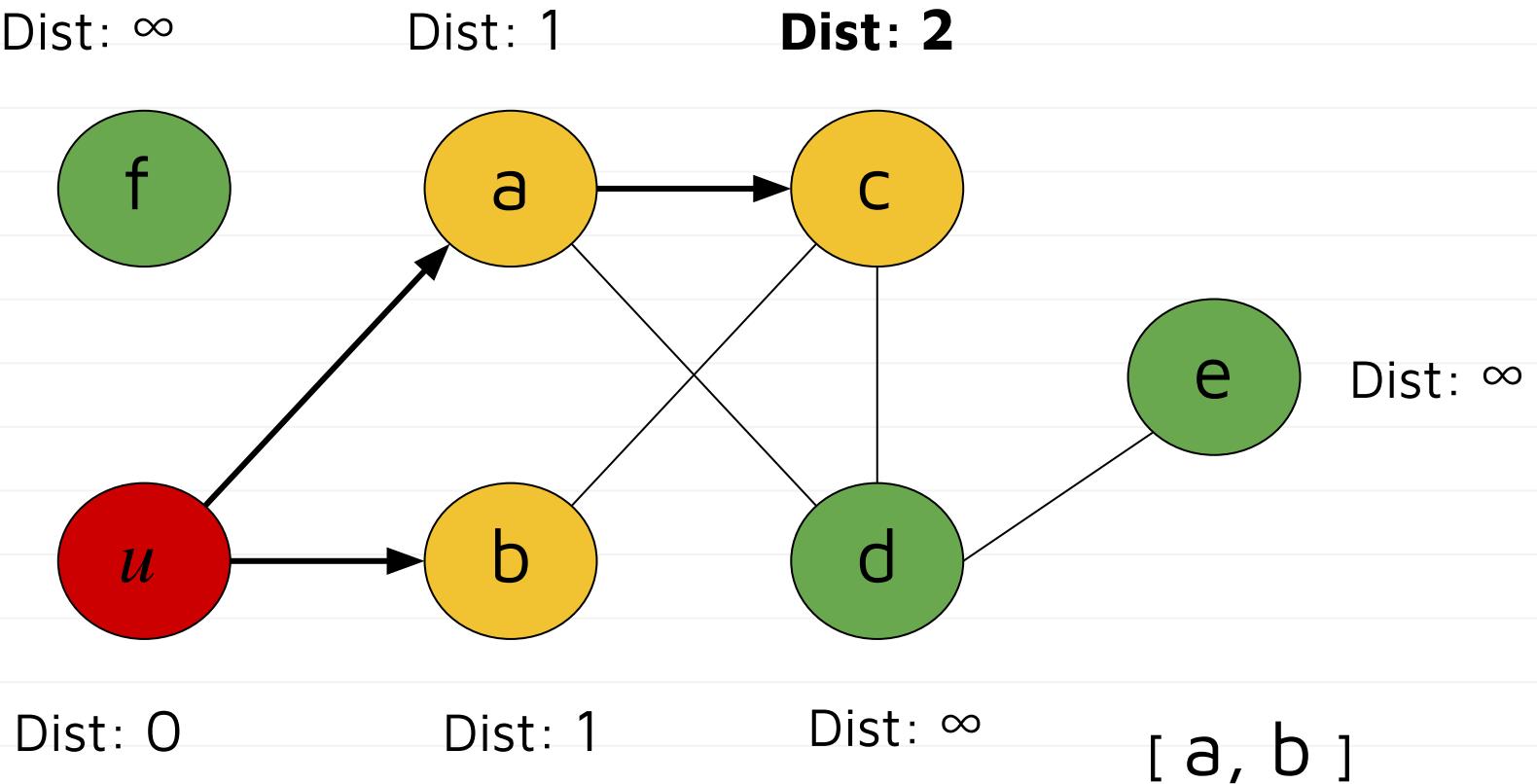
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2 }

predec = {'a': 'u', 'b': 'u'}



distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a',



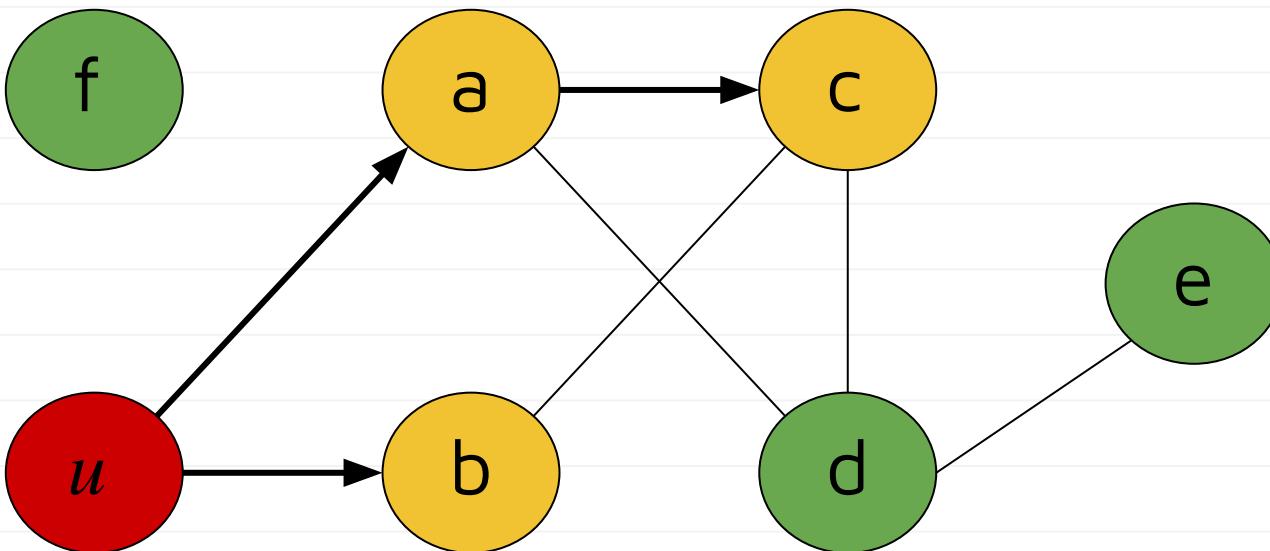
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a',

Dist: ∞

Dist: 1

Dist: 2



Dist: ∞

[a, b, c]

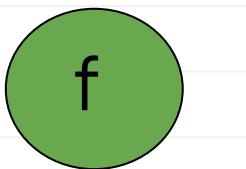
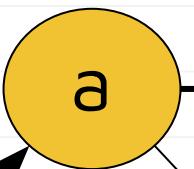
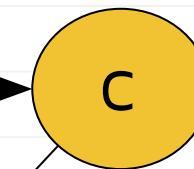
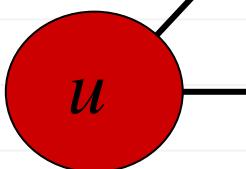
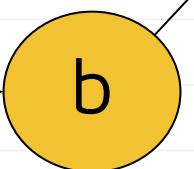
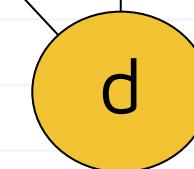
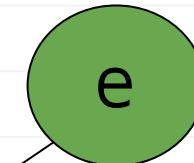
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a',

Dist: ∞

Dist: 1

Dist: 2



Dist: 0

Dist: 1

Dist: 2

[a, b, c]

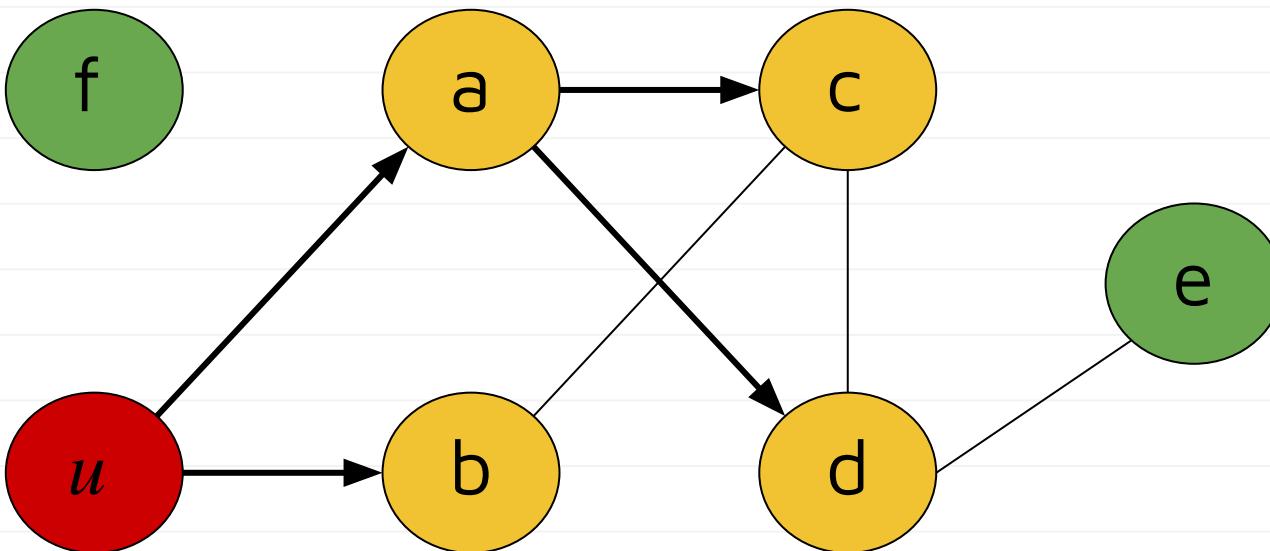
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a', 'd': 'a',

Dist: ∞

Dist: 1

Dist: 2



Dist: 0

Dist: 1

Dist: 2

Dist: ∞
[a, b, c]

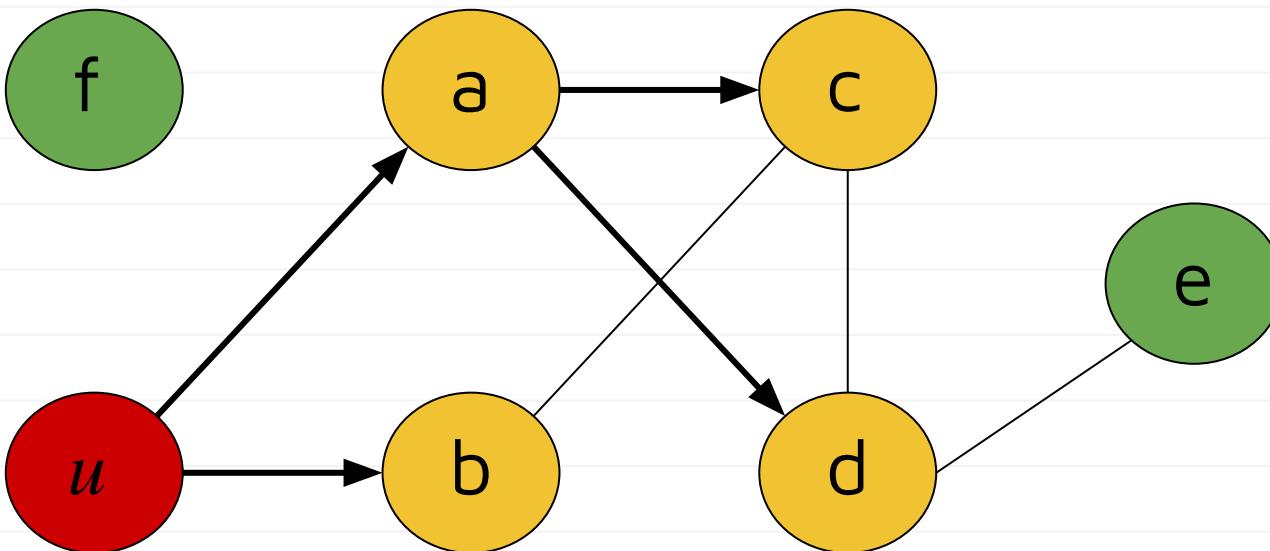
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = { 'a': 'u', 'b': 'u',
'c': 'a', 'd': 'a', }

Dist: ∞

Dist: 1

Dist: 2



Dist: ∞
[a, b, c, d]

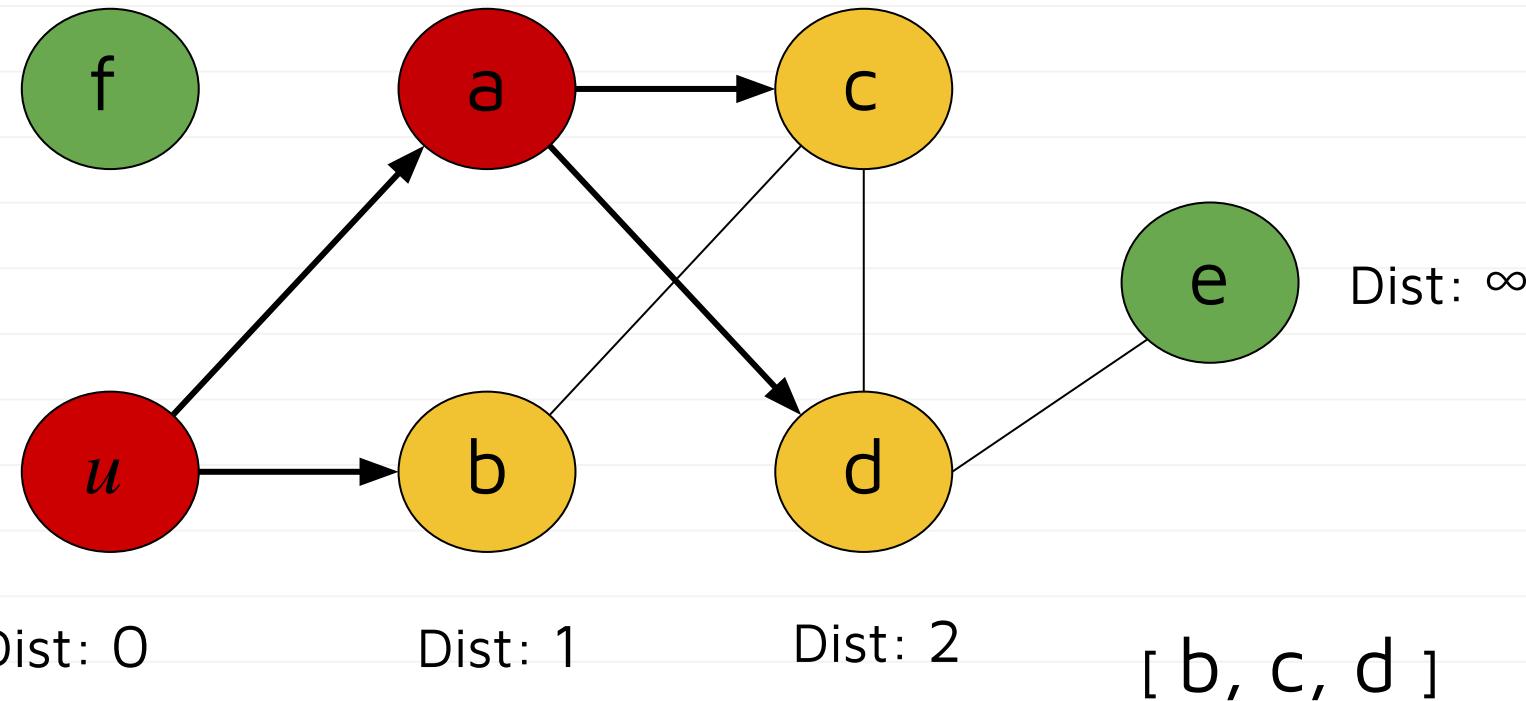
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a', 'd': 'a',

Dist: ∞

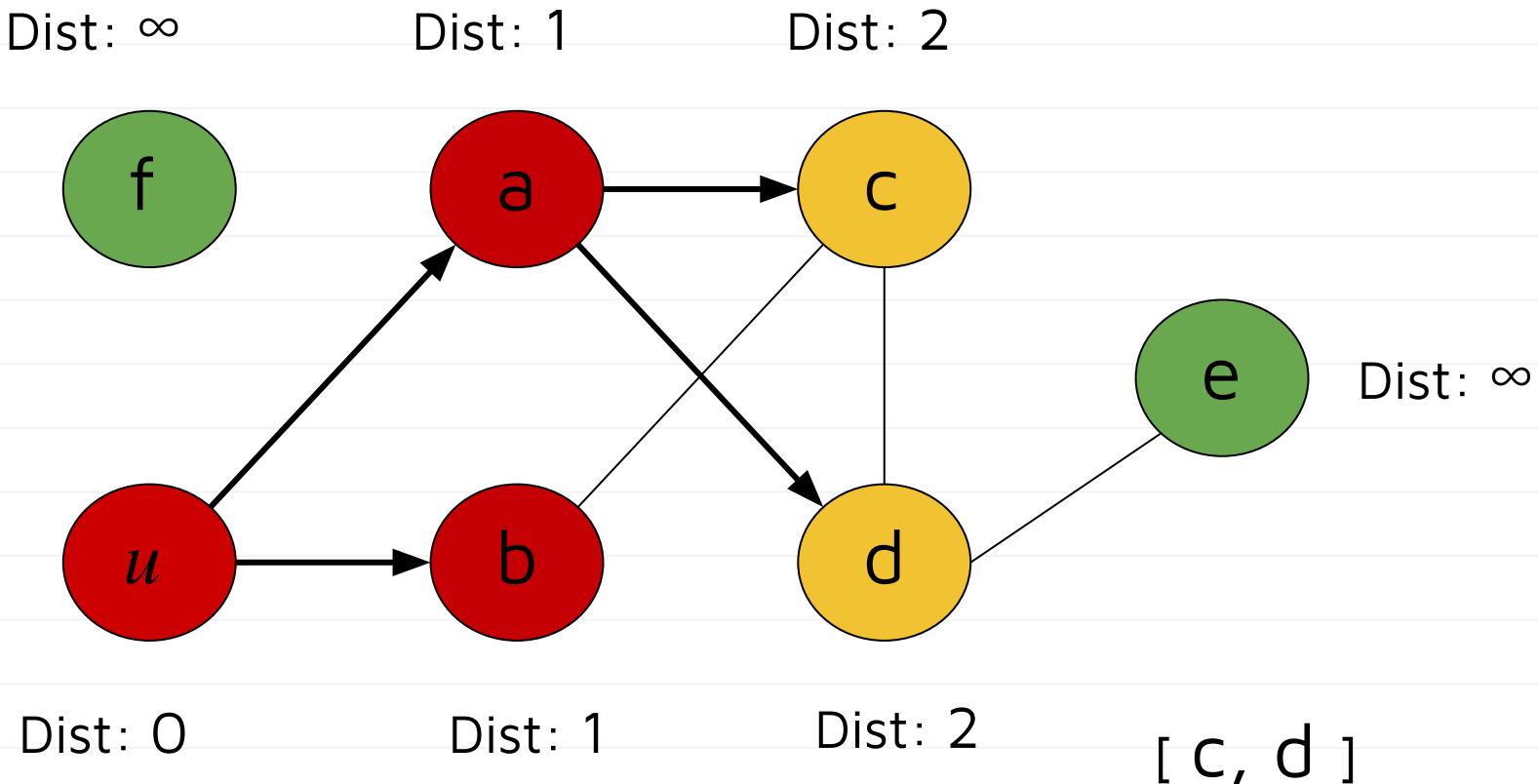
Dist: 1

Dist: 2



distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a', 'd': 'a',



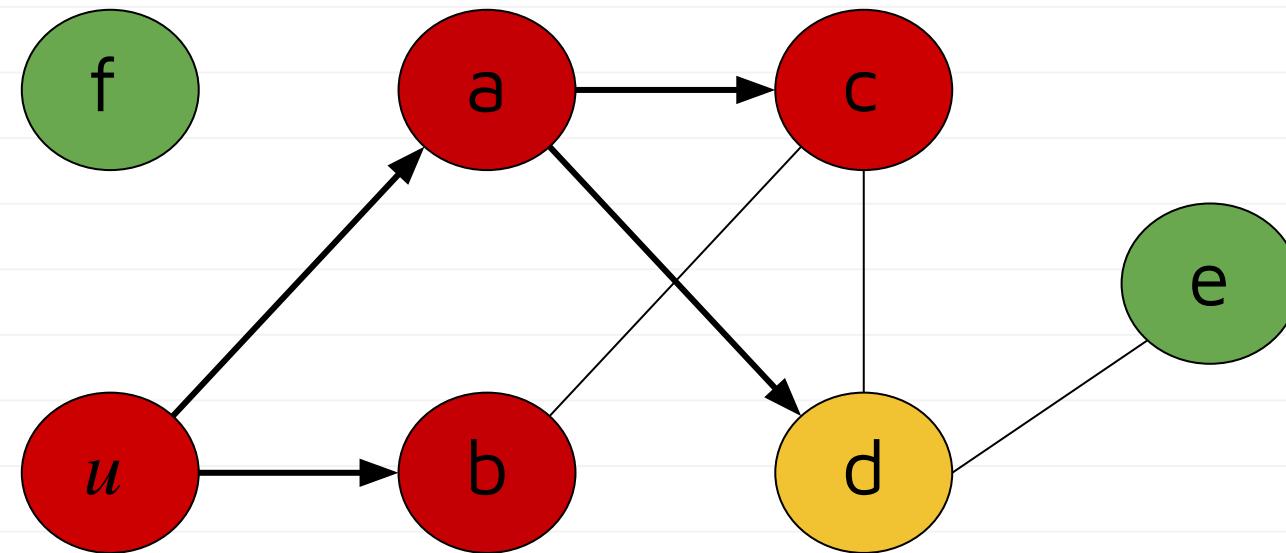
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a', 'd': 'a',

Dist: ∞

Dist: 1

Dist: 2



[d]

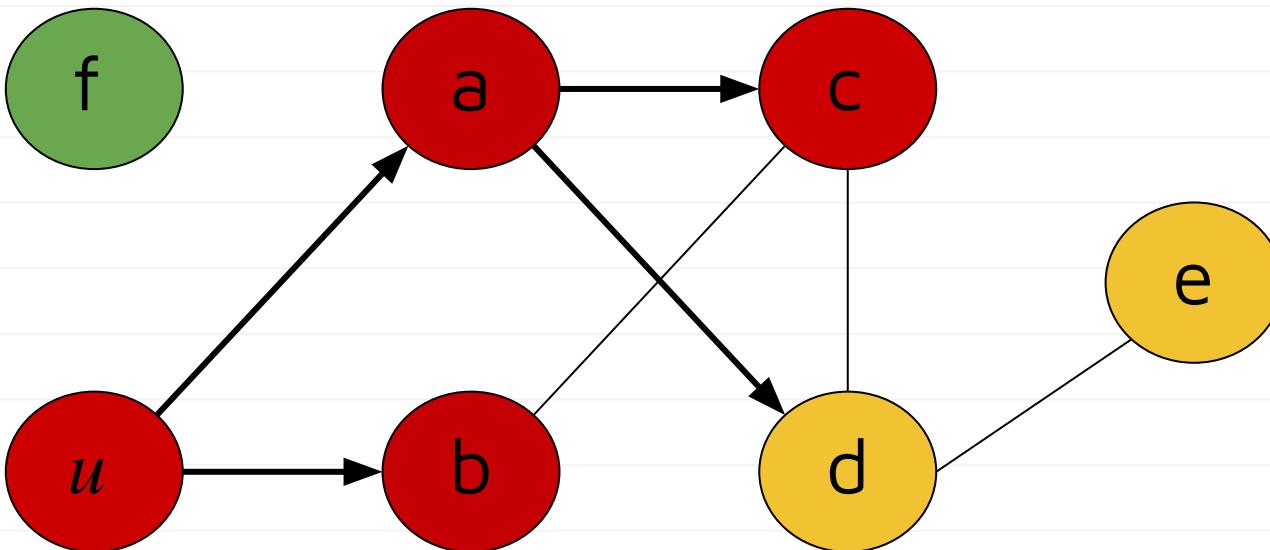
distance = { 'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2 }

predec = {'a': 'u', 'b': 'u',
'c': 'a', 'd': 'a',

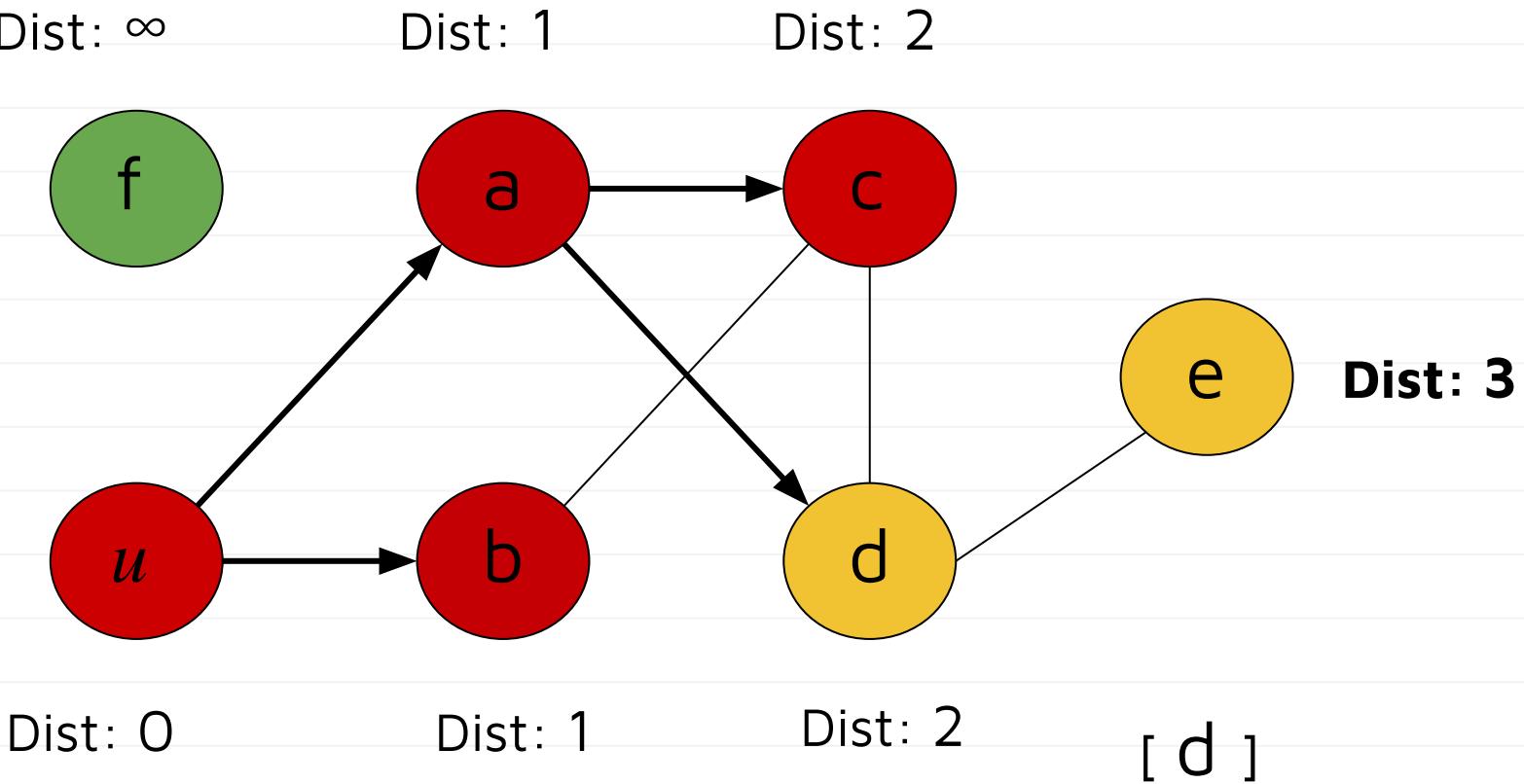
Dist: ∞

Dist: 1

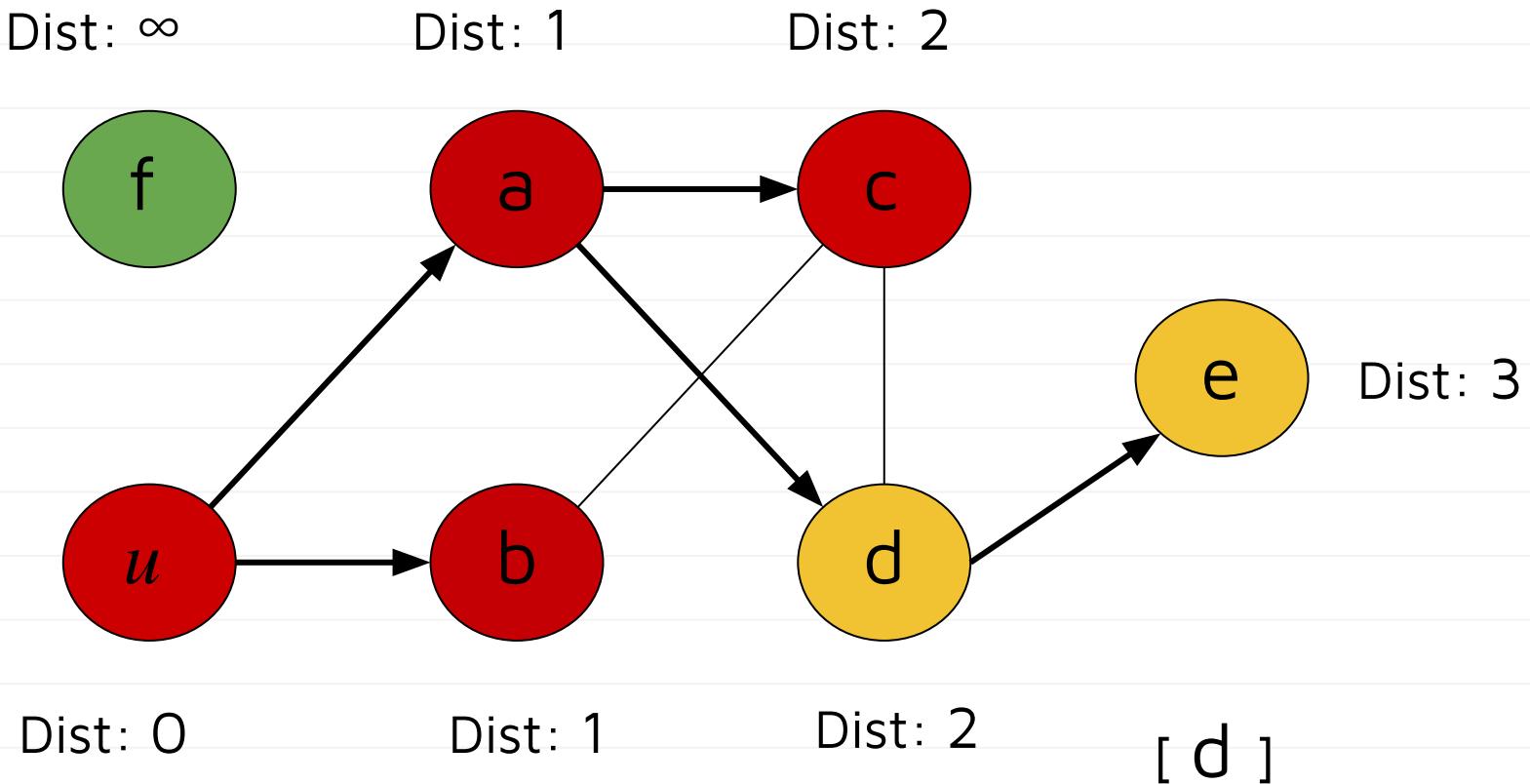
Dist: 2



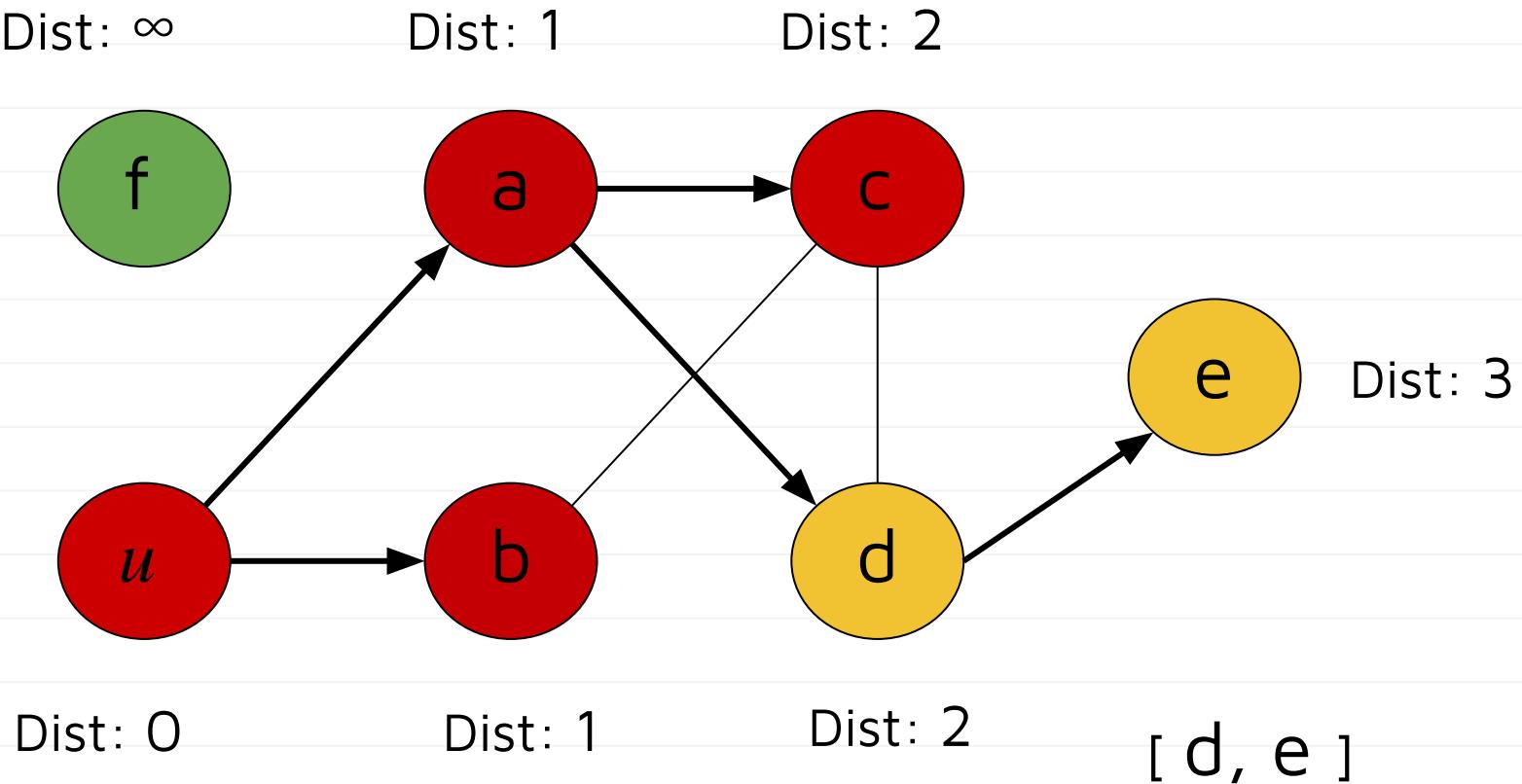
[d]



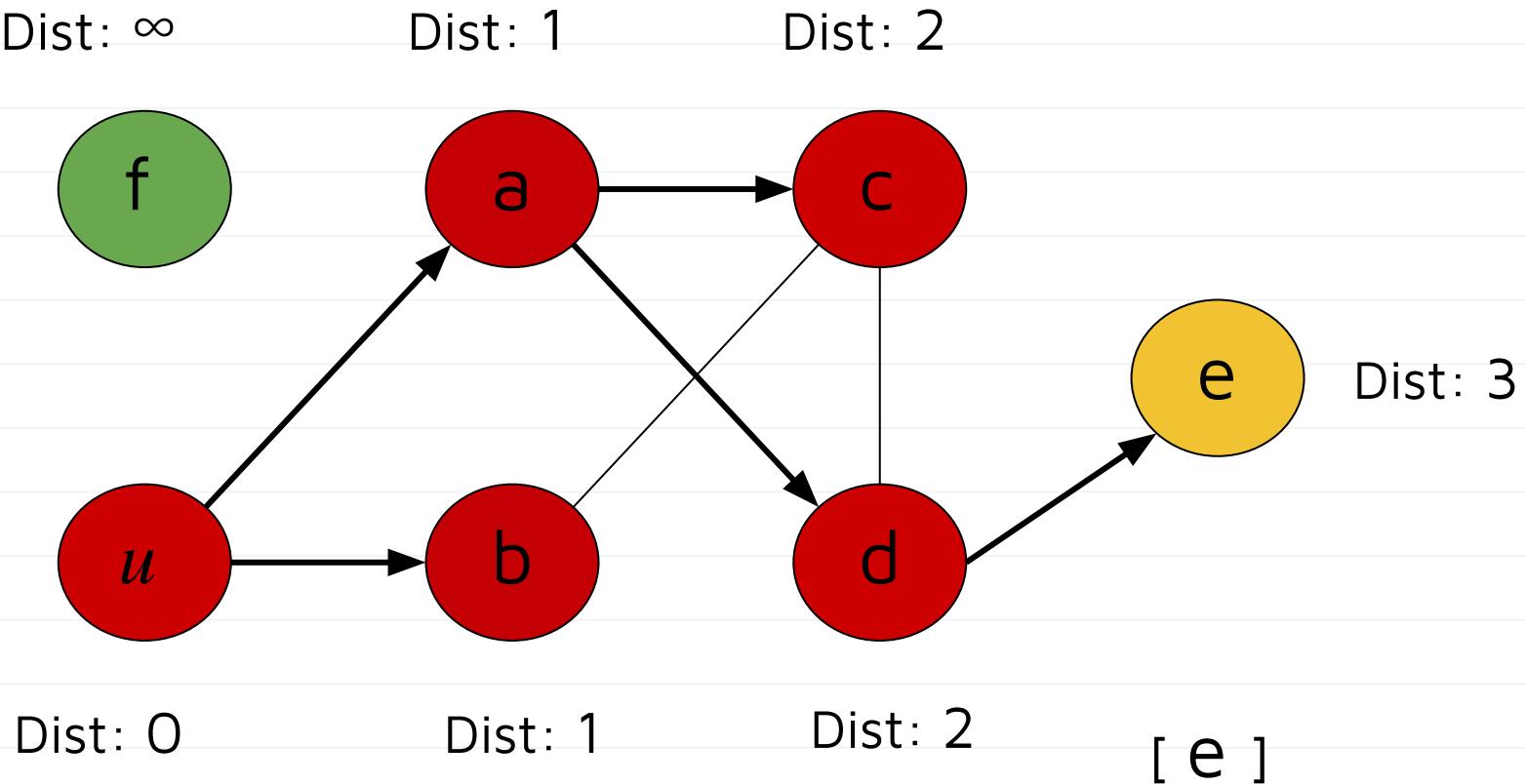
distance = {'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2, 'e': 3} predec = {'a': 'u', 'b': 'u', 'c': 'a', 'd': 'a', 'e': 'd'}



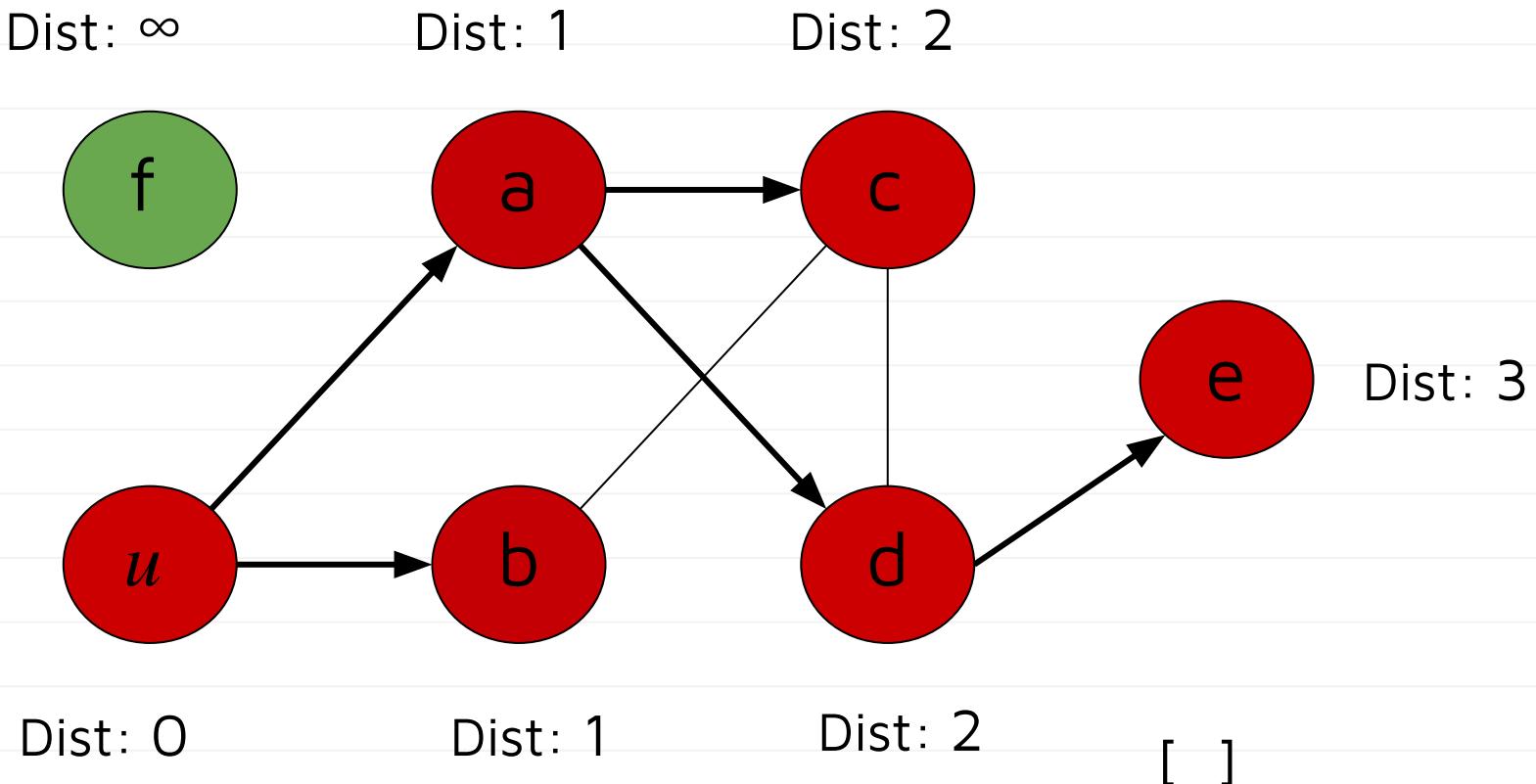
distance = {'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2, 'e': 3} predec = {'a': 'u', 'b': 'u', 'c': 'a', 'd': 'a', 'e': 'd'}



distance = {'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2, 'e': 3} predec = {'a': 'u', 'b': 'u', 'c': 'a', 'd': 'a', 'e': 'd'}



distance = {'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2, 'e': 3} predec = {'a': 'u', 'b': 'u',
 'c': 'a', 'd': 'a', 'e': 'd'}

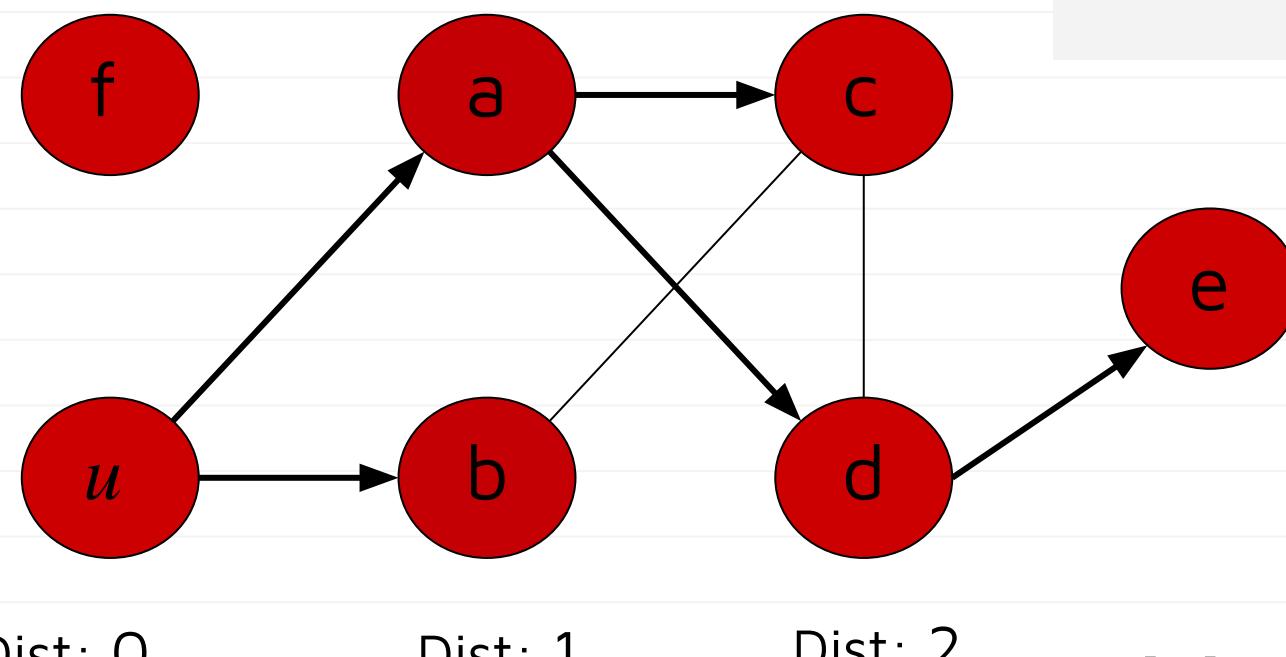


```
distance = {'u': 0, 'a': 1, 'b': 1, 'c': 2, 'd': 2, 'e': 3,  
'f':  $\infty$  }
```

Dist: ∞

Dist: 1

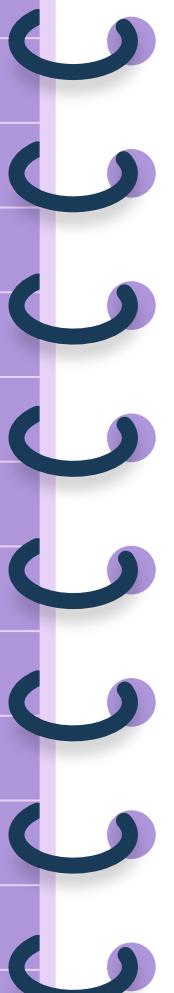
Dist: 2



```
predec = {'a': 'u', 'b': 'u',  
'c': 'a', 'd': 'a',  
'e': 'd', 'f': None,  
'u': None}
```

[]

BFS Trees



Result of BFS

- Each node reachable from source has a single BFS predecessor.
 - Except for the source itself.
- The result is a **tree** (or forest).

Trees

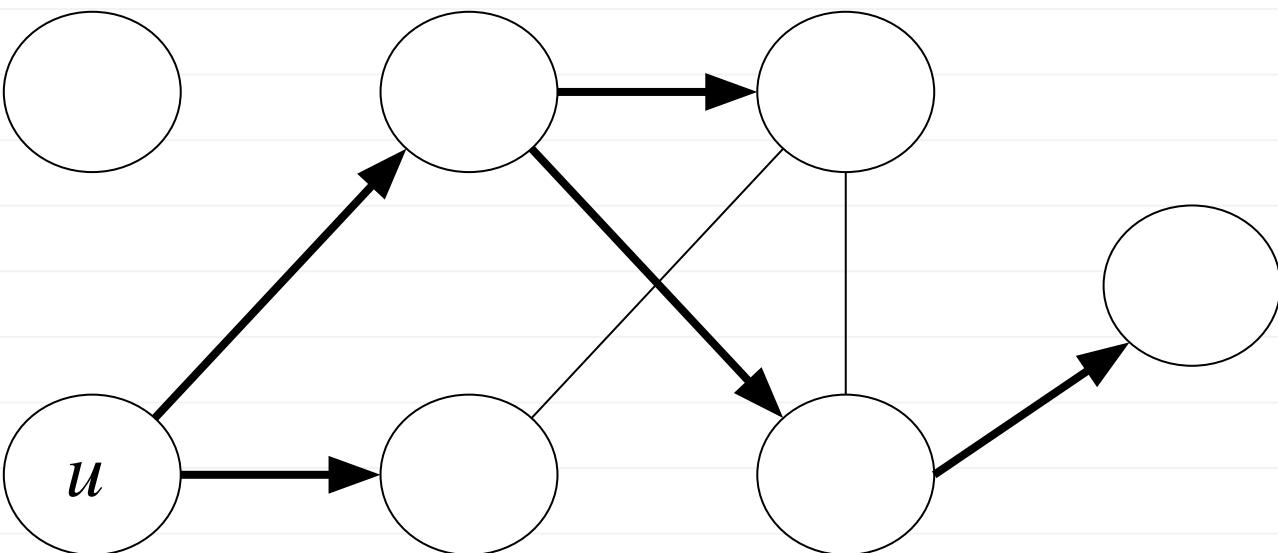
- A (free) **tree** is an undirected graph $T = (V, E)$ such that T is *connected* and $|E| = |V| - 1$.
- A **forest** is graph in which each connected component is a tree.

BFS Trees (Forests)

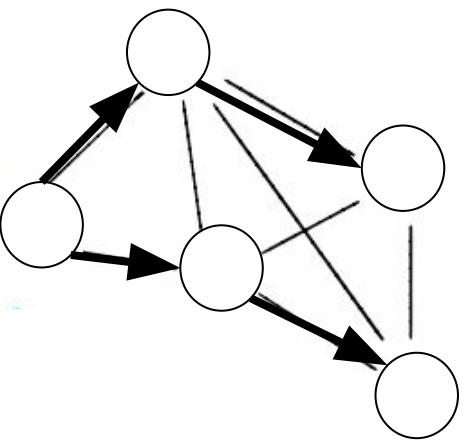
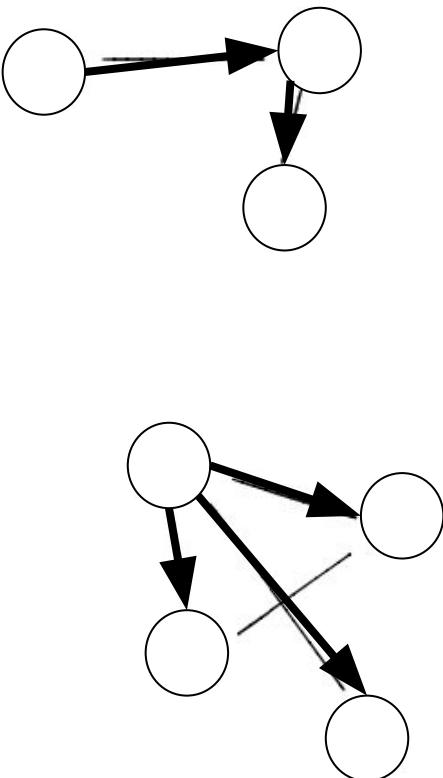
- If the input is connected, BFS produces a **tree**.
- If the input is not connected, BFS produces a **forest**.

Example

How many nodes?
How many edges?



Example



BFS Trees

- BFS trees and forests encode **shortest path distances**.

Thank you!

Do you have any questions?

CampusWire!