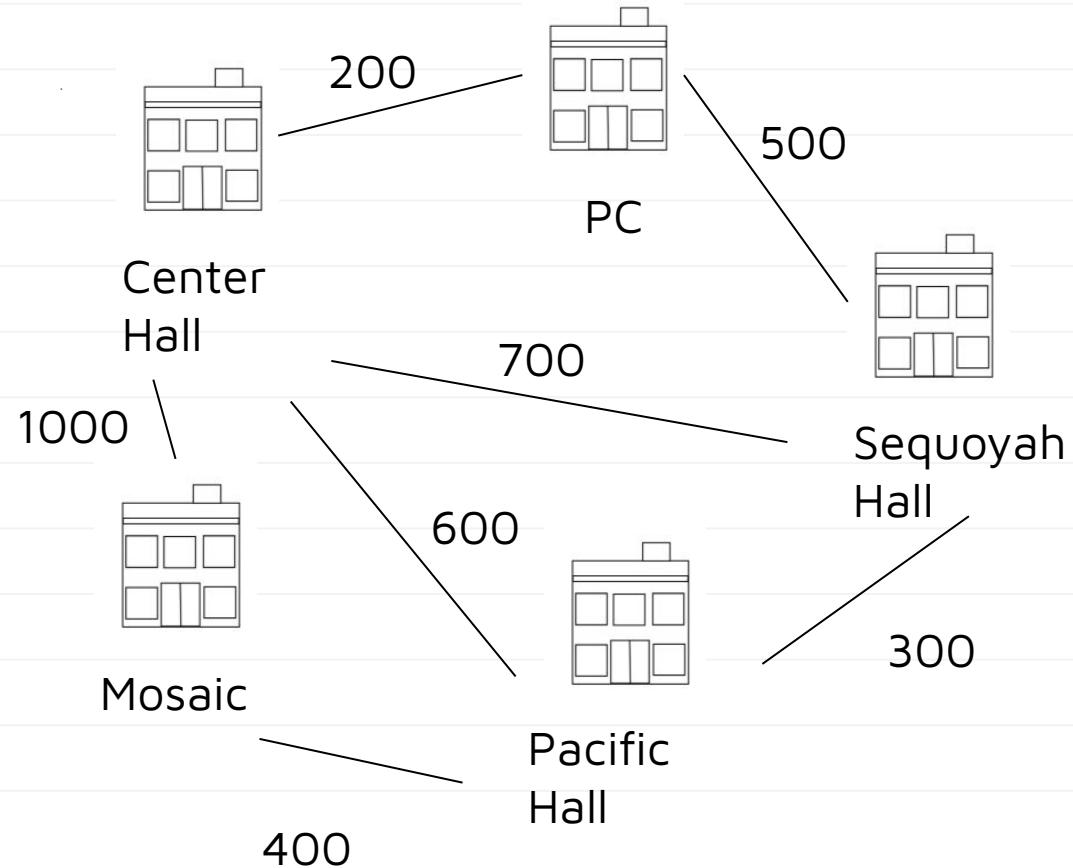


DSC 40B

*Lecture 26 : Minimum
Spanning Trees. Prim's
algorithm*

Minimum Spanning Trees

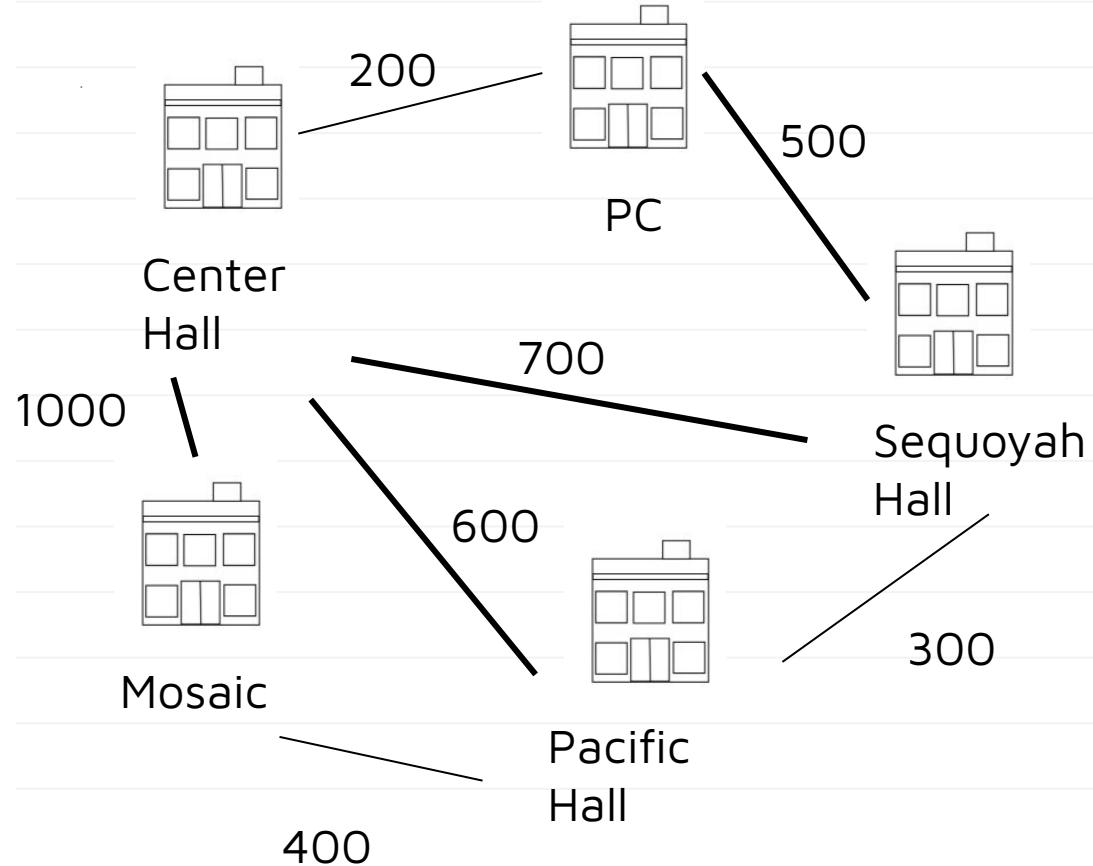
Dream World



Choose a set of roads so that:

- Every building must get coffee.
- No loops
- Total cost is minimized.

Dream World



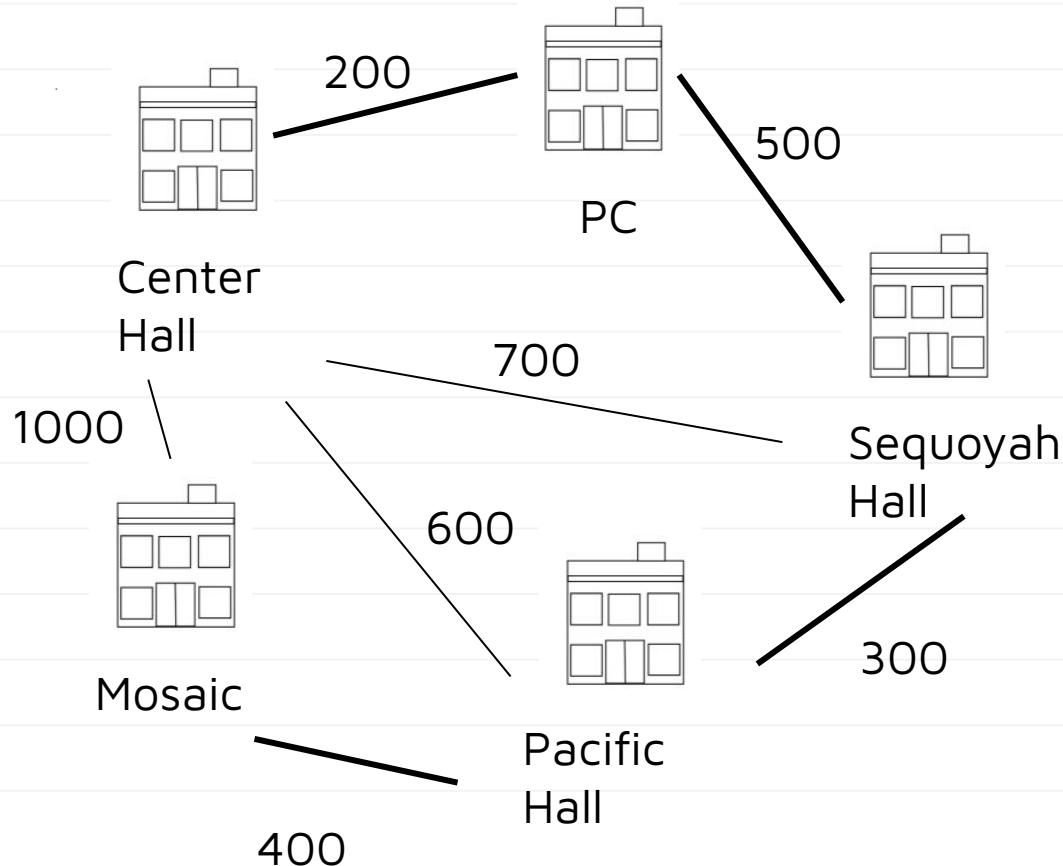
Choose a set of roads so that:

- Every building must get coffee.
- No loops
- Total cost is minimized.

One way:

- $1000 + 700 + 500 + 600 = 2800$
- Not the shortest

Dream World



Choose a set of roads so that:

- Every building must get coffee.
- No loops
- Total cost is minimized.

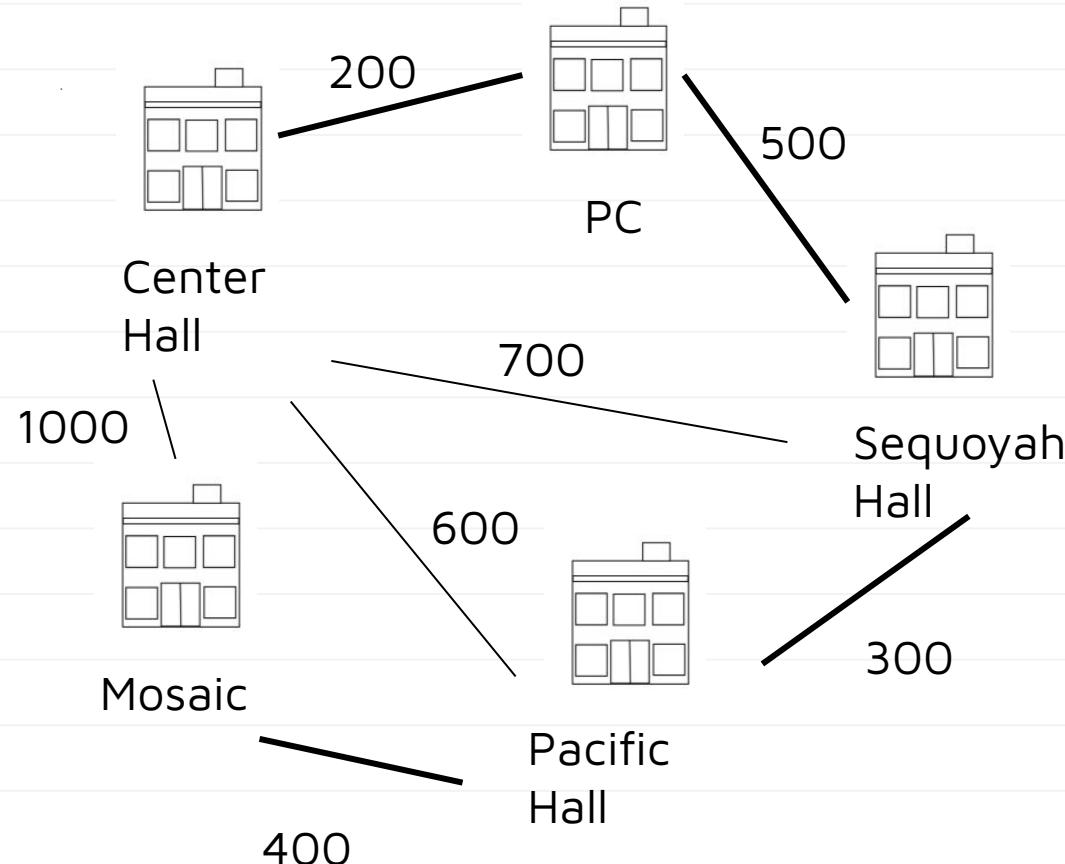
One way:

- $1000 + 700 + 500 + 600 = 2800$
- **Not the shortest**

Better path:

- $200 + 300 + 400 + 500 = 1400$

Dream World



Choose a set of roads so that:

- Every building must get coffee.
- No loops
- Total cost is minimized.

One way:

- $1000 + 700 + 500 + 300 = 2800$
- **Not the shortest**

Better path:

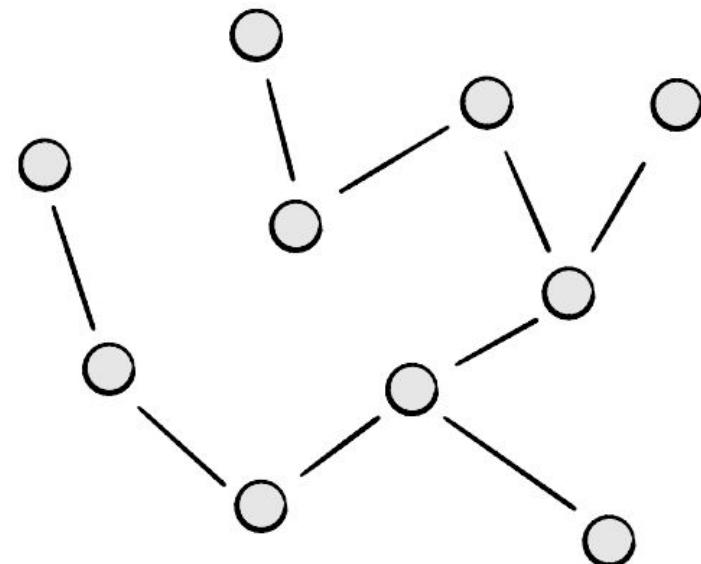
- $200 + 300 + 400 + 500 = 1400$

Solution: compute a **minimum spanning tree**.

Trees

- An undirected graph $T = (V, E)$ is a tree if
 - it is connect and
 - It is acyclic

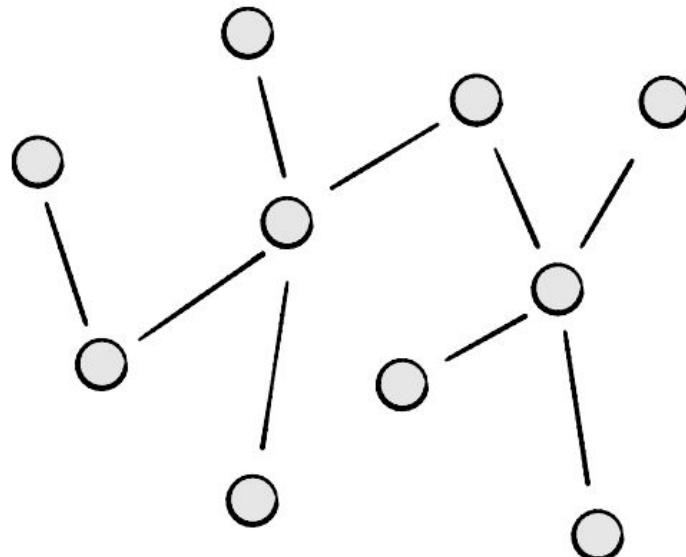
Example: a **tree**.



Trees

- An undirected graph $T = (V, E)$ is a tree if
 - it is connect and
 - It is acyclic

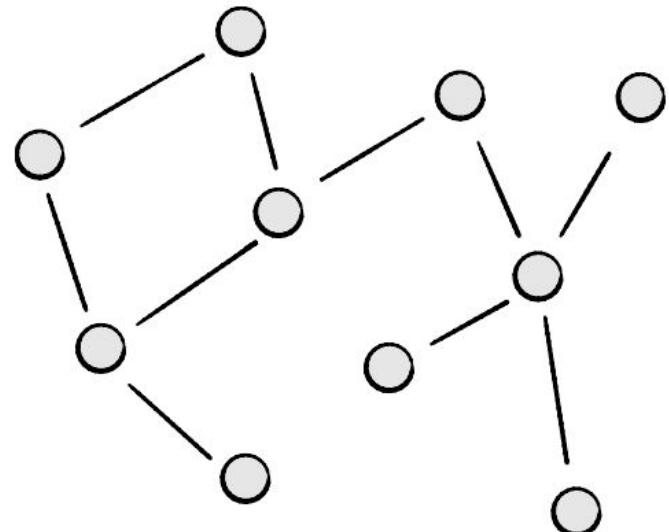
Example: a **tree**.



Trees

- An undirected graph $T = (V, E)$ is a tree if
 - it is connect and
 - It is acyclic

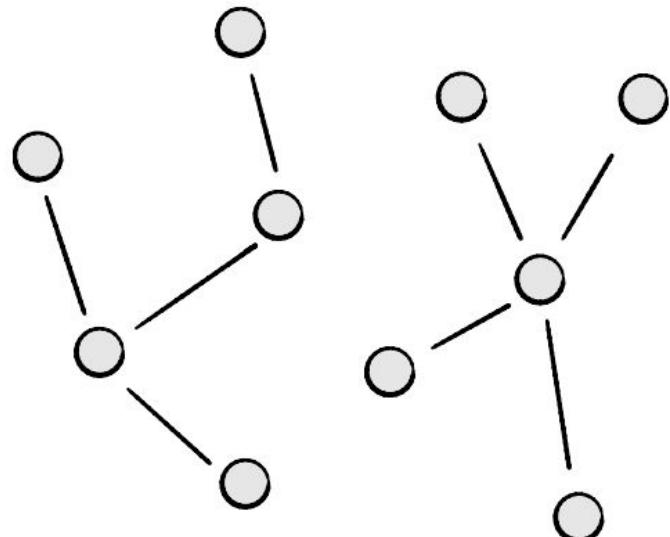
Example: **not** a tree.



Trees

- An undirected graph $T = (V, E)$ is a tree if
 - it is connect and
 - It is acyclic

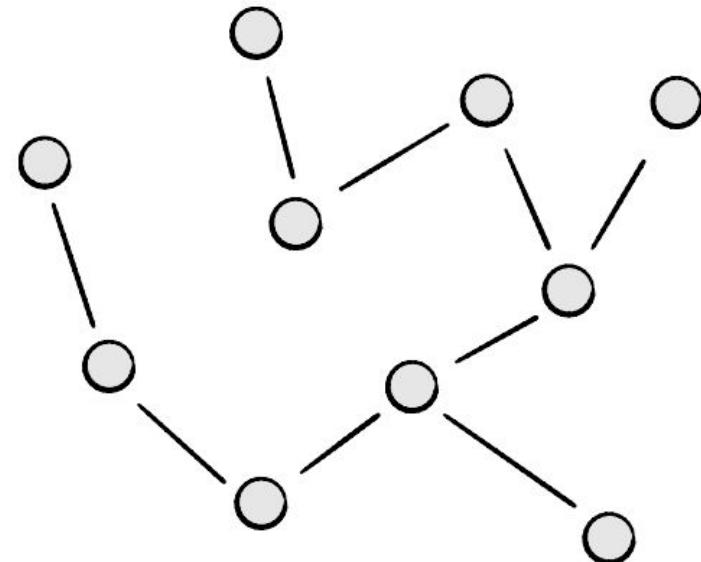
Example: **not** a tree.



Trees: Equivalent Definition

- An undirected graph $T = (V, E)$ is a tree if
 - it is connected; and
 - $|E| = |V| - 1$.

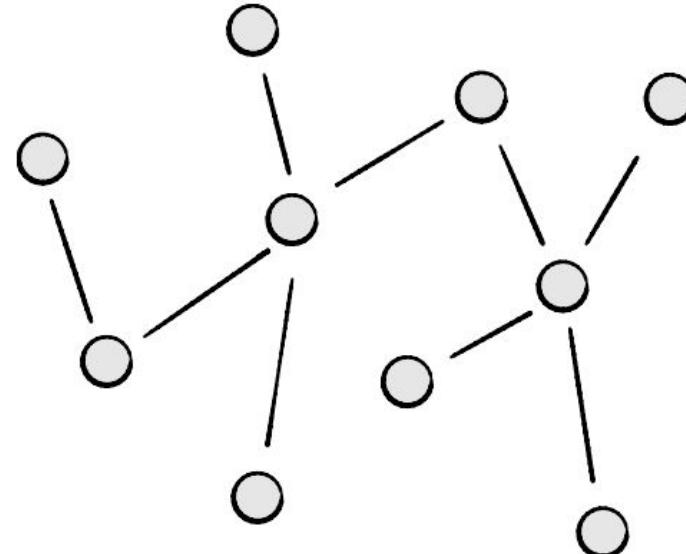
Example: a **tree**.



Trees: Equivalent Definition

- An undirected graph $T = (V, E)$ is a tree if
 - it is connected; and
 - $|E| = |V| - 1$.

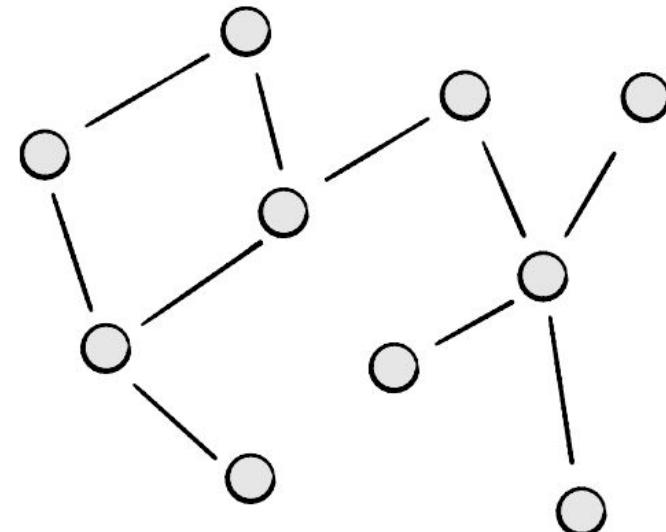
Example: a **tree**.



Trees: Equivalent Definition

- An undirected graph $T = (V, E)$ is a tree if
 - it is connected; and
 - $|E| = |V| - 1$.

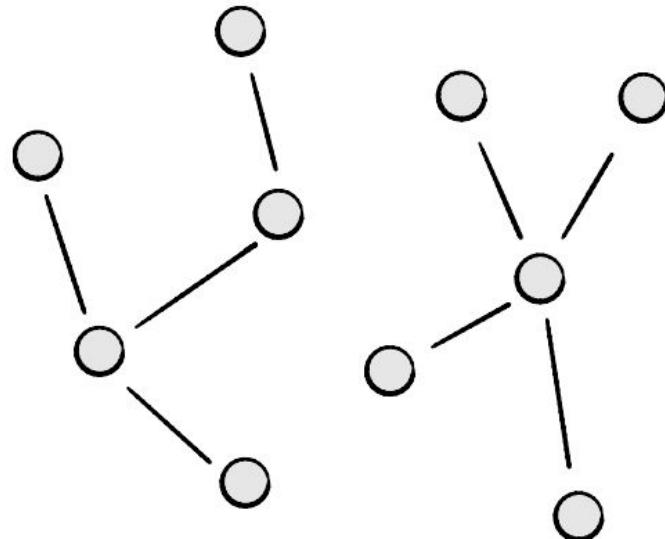
Example: **not** a tree.



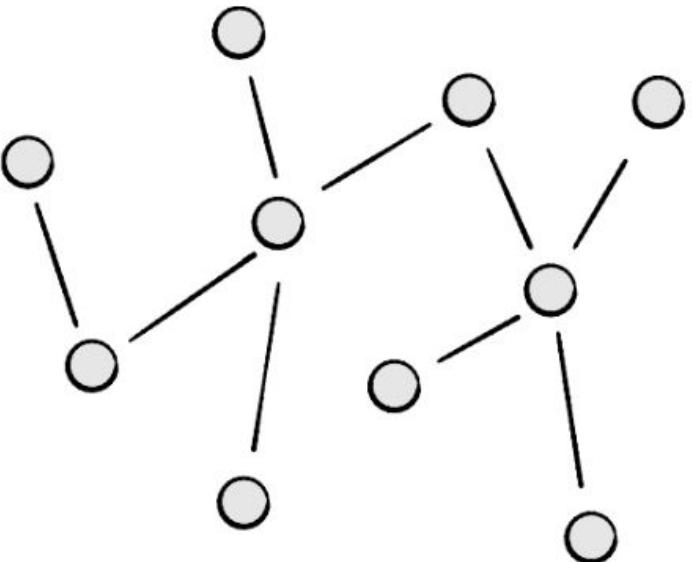
Trees: Equivalent Definition

- An undirected graph $T = (V, E)$ is a tree if
 - it is connected; and
 - $|E| = |V| - 1$.

Example: **not** a tree.

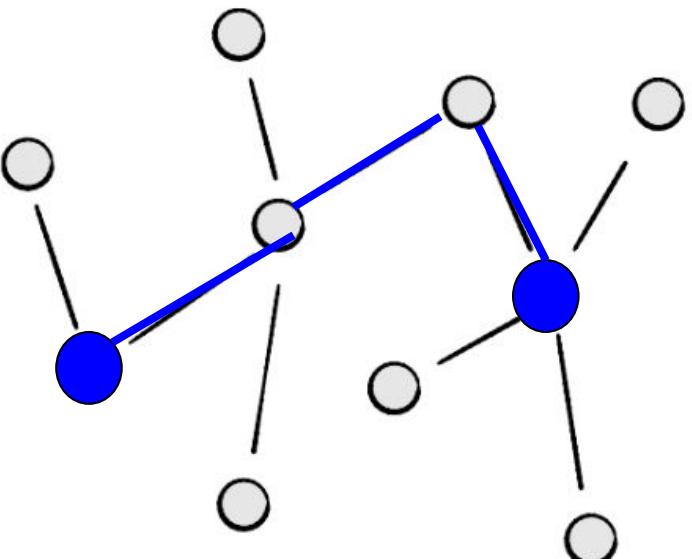


Tree Properties



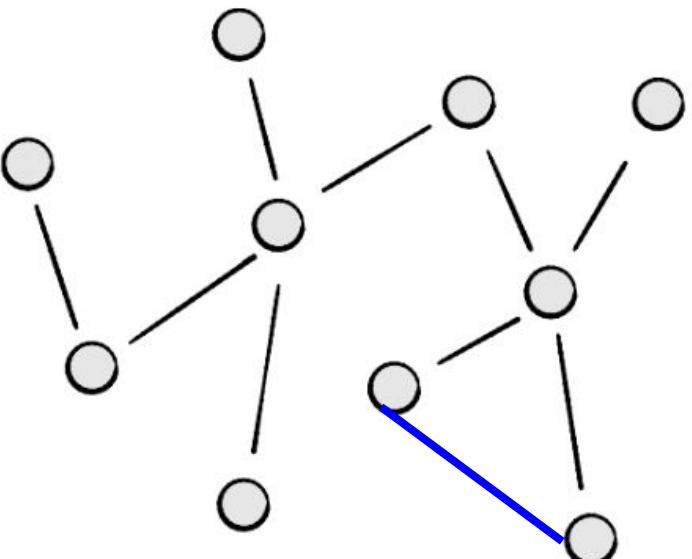
- There is a unique simple path between any two nodes in a tree.
- Adding a new edge to a tree creates a cycle (no longer a tree).
- Removing an edge from a tree disconnects it (no longer a tree).

Tree Properties



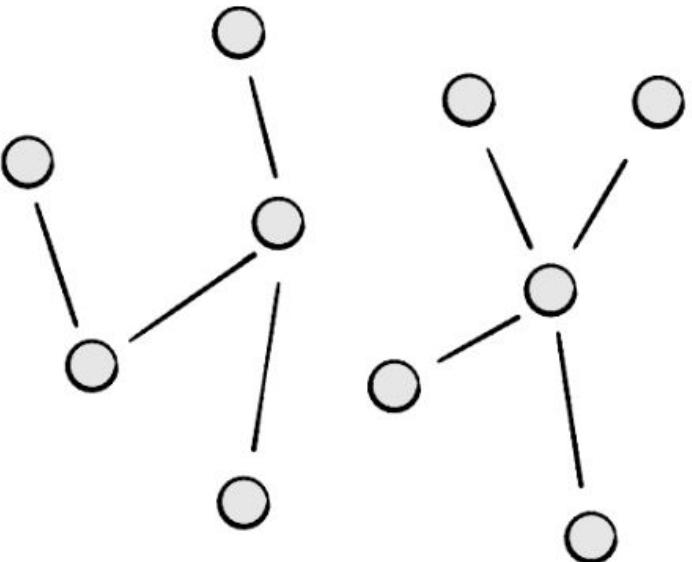
- **There is a unique simple path between any two nodes in a tree.**
- Adding a new edge to a tree creates a cycle (no longer a tree).
- Removing an edge from a tree disconnects it (no longer a tree).

Tree Properties



- There is a unique simple path between any two nodes in a tree.
- **Adding a new edge to a tree creates a cycle (no longer a tree).**
- Removing an edge from a tree disconnects it (no longer a tree).

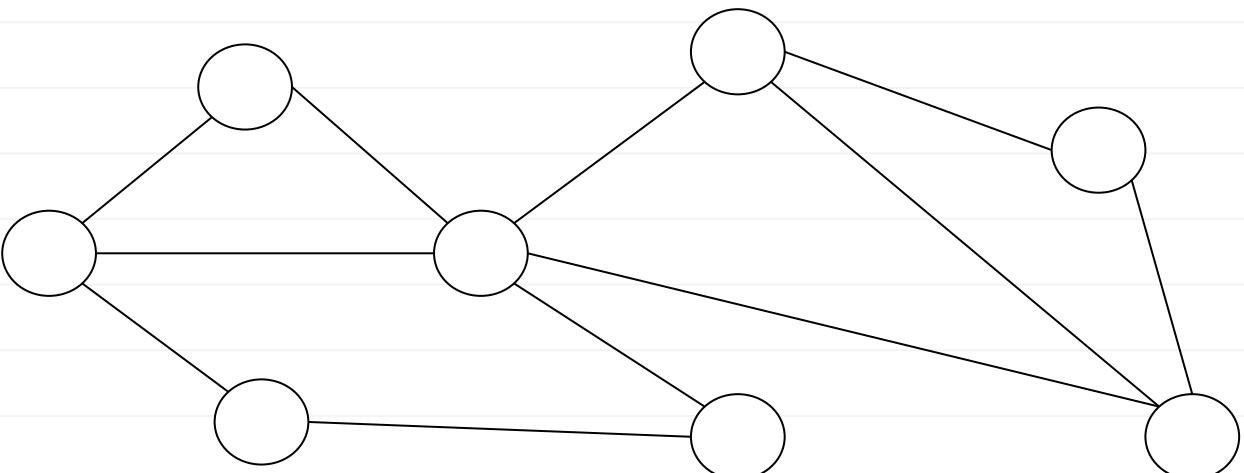
Tree Properties



- There is a unique simple path between any two nodes in a tree.
- Adding a new edge to a tree creates a cycle (no longer a tree).
- **Removing an edge from a tree disconnects it (no longer a tree).**

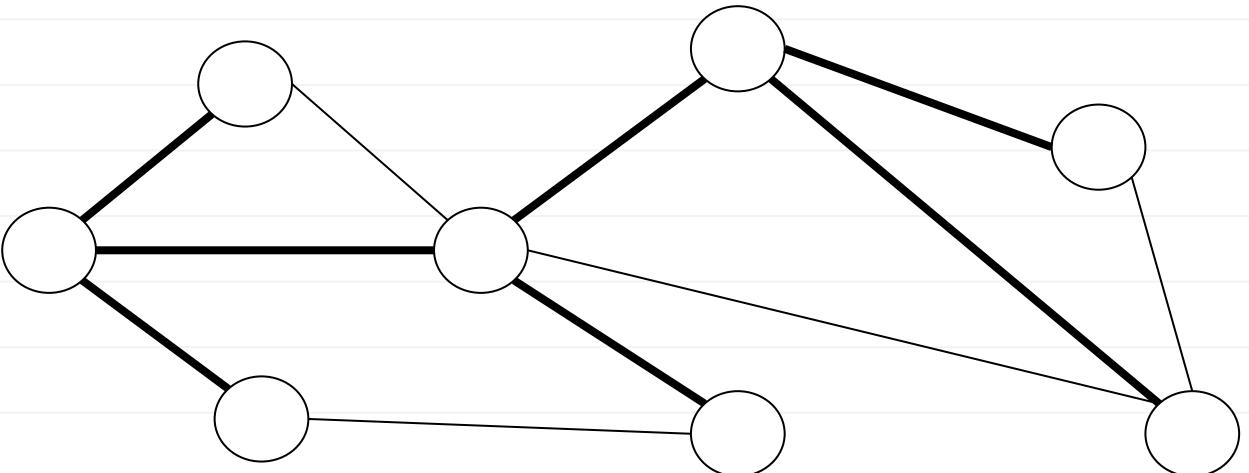
Spanning Trees

- Let $G = (V, E)$ be a **connected** graph. A **spanning tree** of G is a tree $T = (V, E_T)$ with the same nodes as G , and a *subset* of G 's edges.

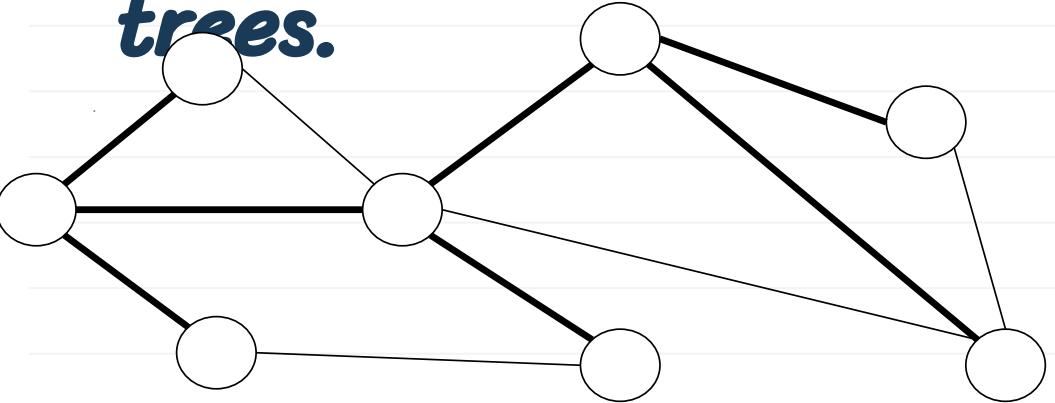


Spanning Trees

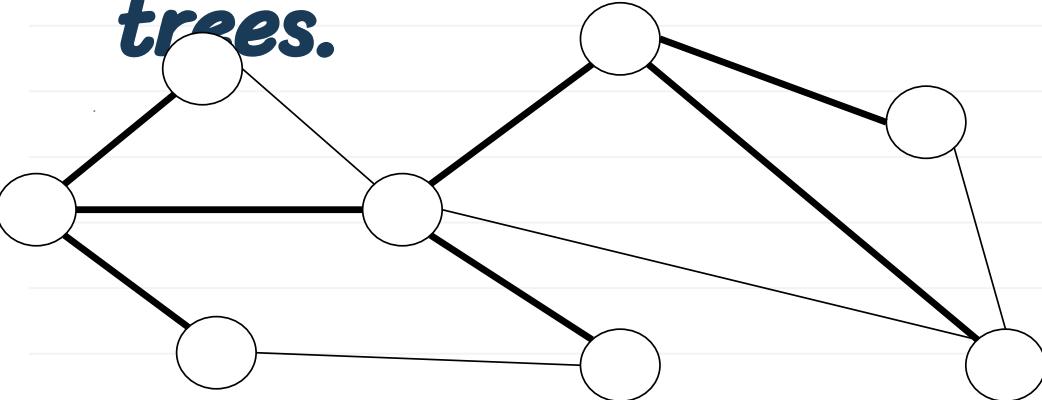
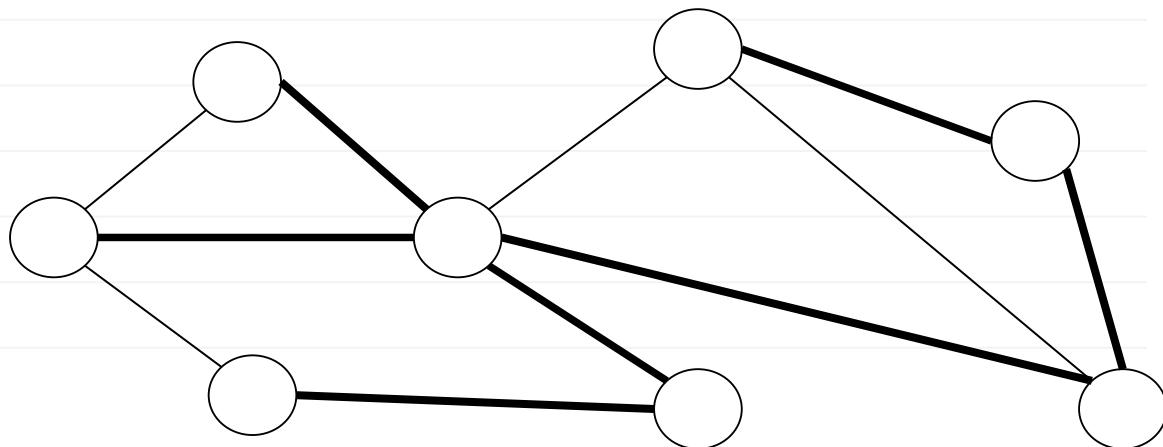
- Let $G = (V, E)$ be a **connected** graph. A **spanning tree** of G is a tree $T = (V, E_T)$ with the same nodes as G , and a subset of G 's edges.



The same graph can have many spanning trees.

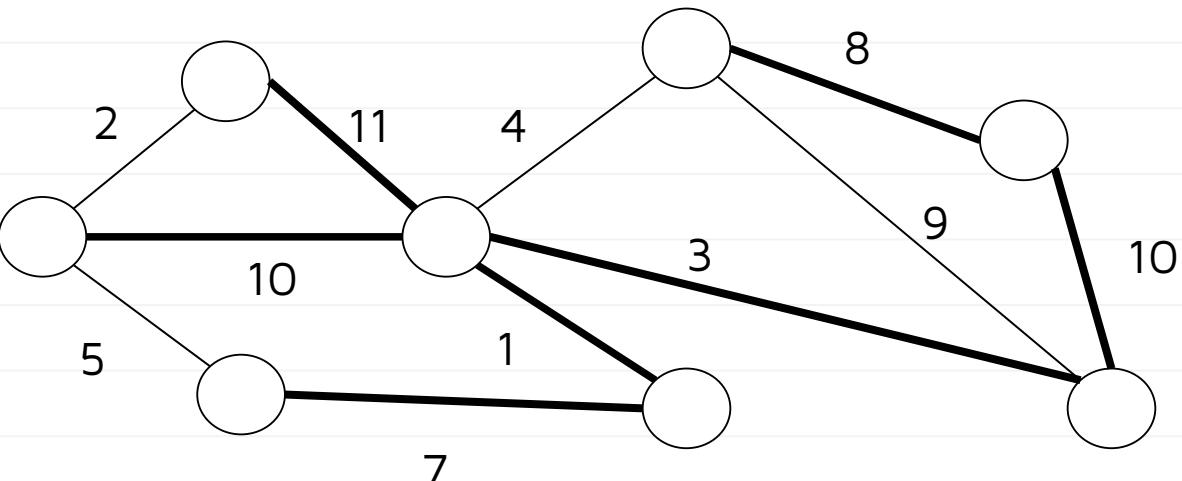


The same graph can have many spanning trees.



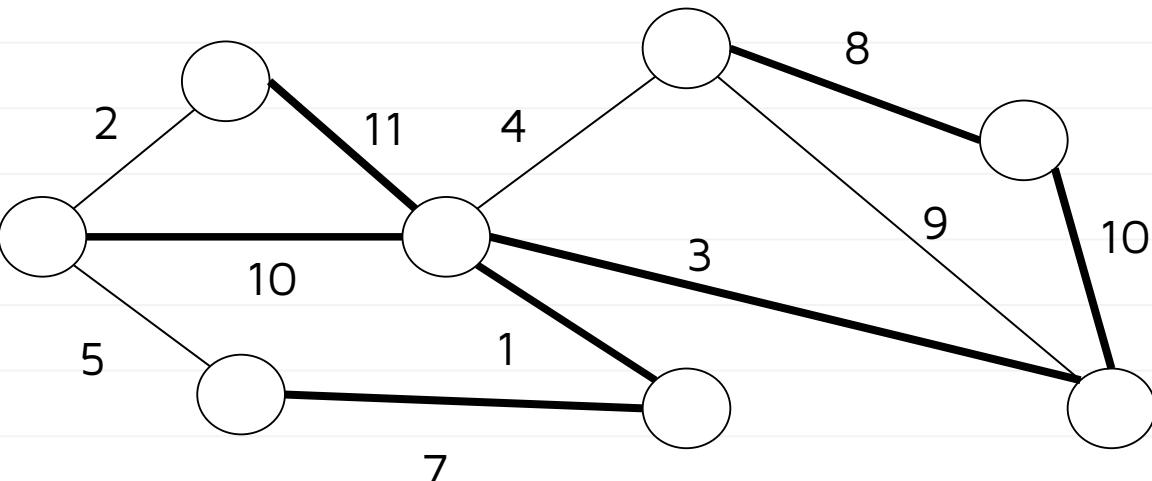
Spanning Tree Cost

If $G = (V, E, \omega)$ is a weighted *undirected* graph, the **cost** (or **weight**) of a spanning tree is the total weight of the edges in the spanning tree.



Spanning Tree Cost

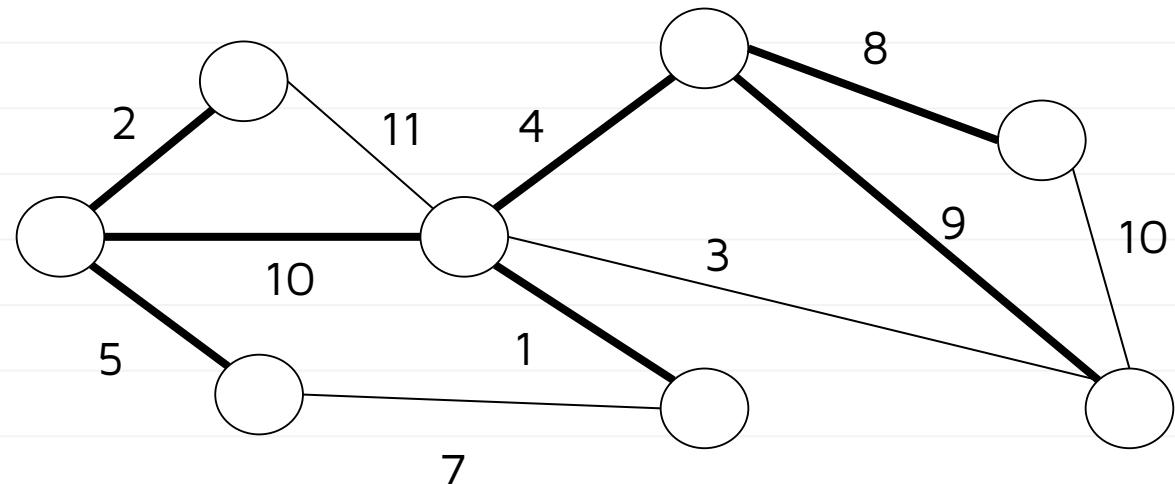
If $G = (V, E, \omega)$ is a weighted undirected graph, the **cost** (or **weight**) of a spanning tree is the total weight of the edges in the spanning tree.



Cost: $10 + 11 + 1 + 7 + 3 + 8 + 10 = 50$

Spanning Tree Cost

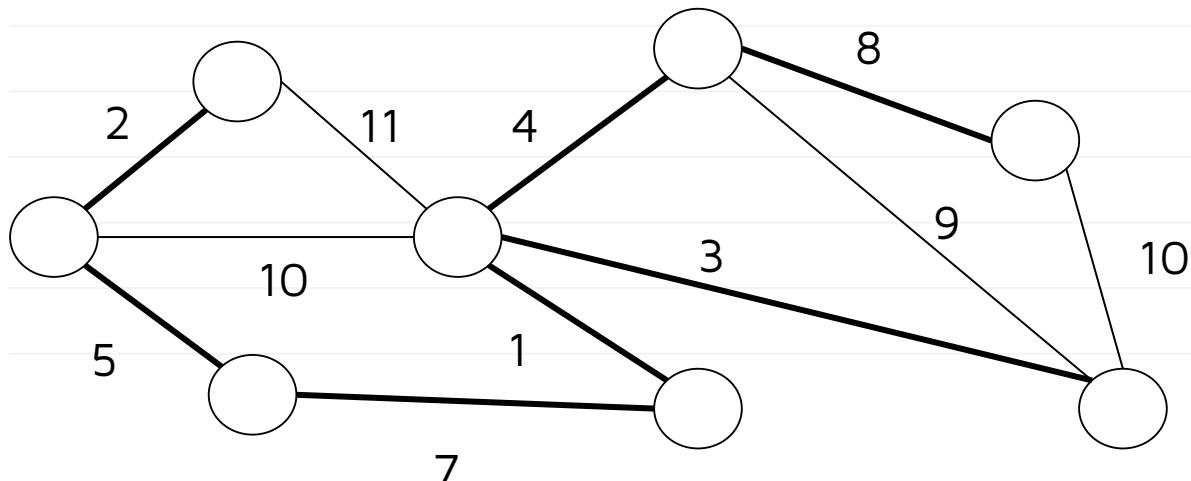
If $G = (V, E, \omega)$ is a weighted undirected graph, the **cost** (or **weight**) of a spanning tree is the total weight of the edges in the spanning tree.



Cost: $2 + 10 + 5 + 1 + 4 + 9 + 8 = 39$

Minimum Spanning Tree

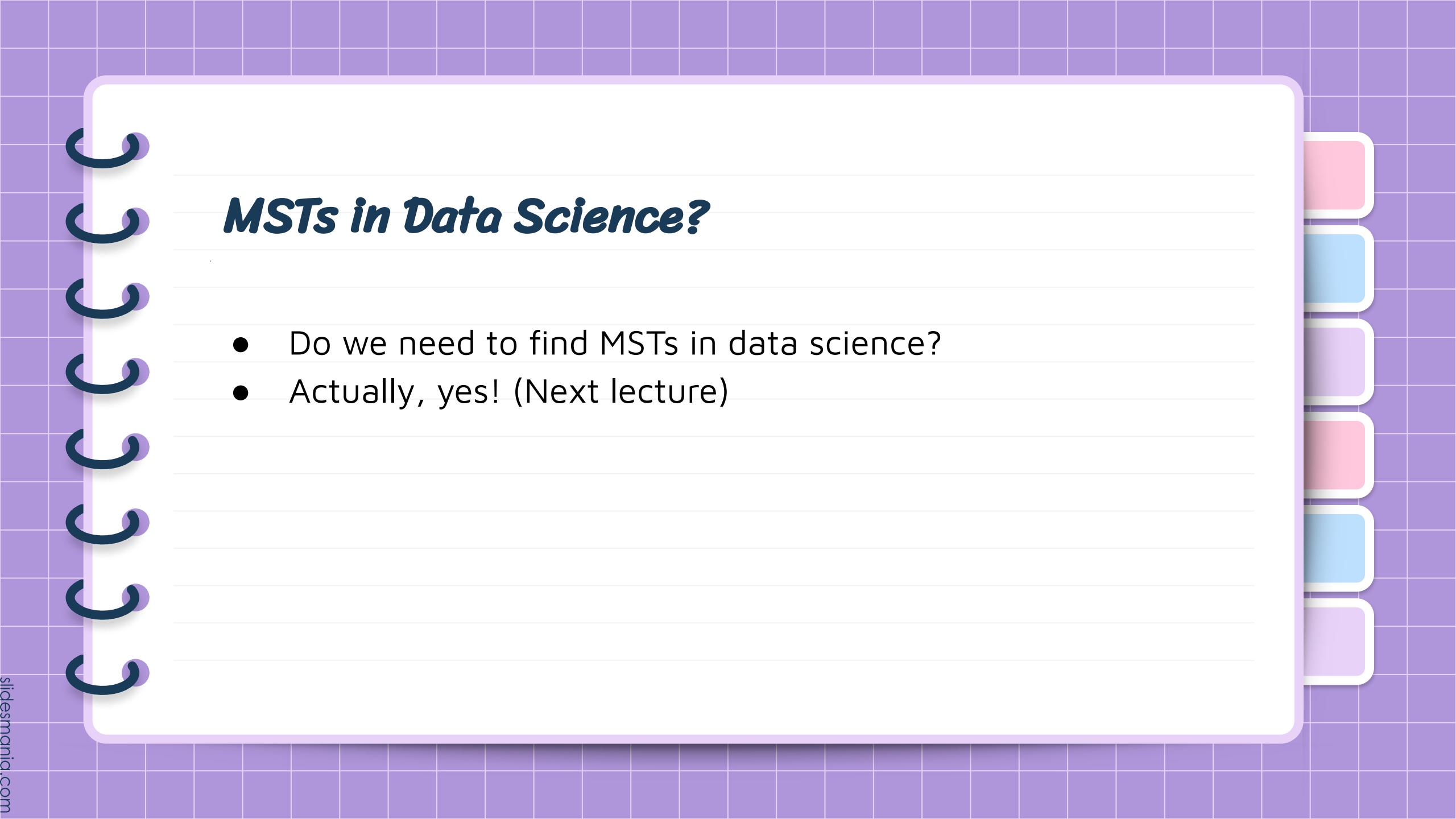
- The **minimum spanning** tree problem is as follows:
 - **Given**: A weighted, undirected graph $G = (V, E, \omega)$.
 - **Compute**: a spanning tree of G with minimum cost (i.e., minimum total edge weight).
- For a given graph, the MST may not be unique.



Cost:
 $1+2+3+4+5+7+8=30$

Question

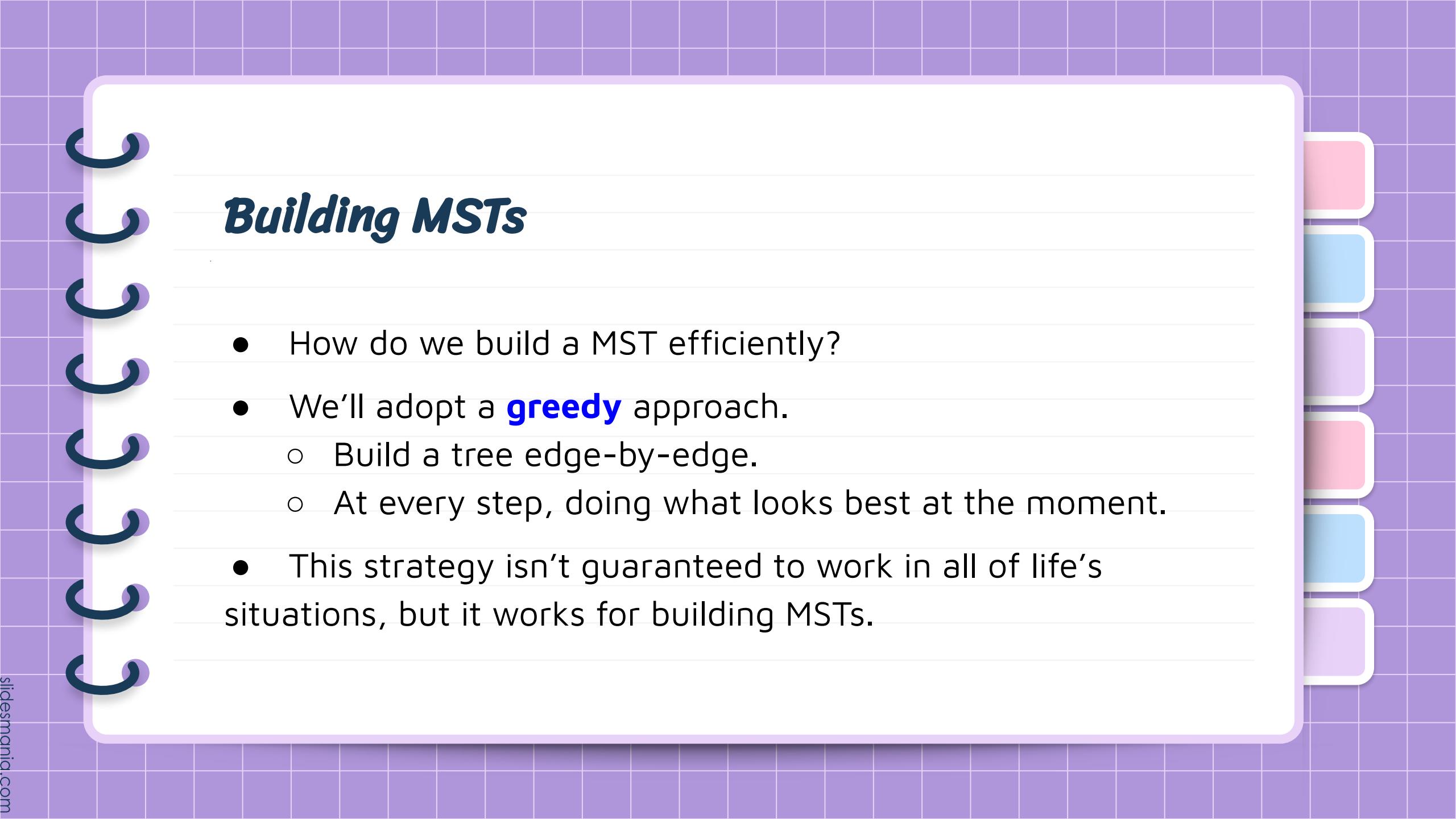
Suppose the edges of a graph $G = (V, e, \omega)$ all have the same weight. How can we compute an MST of the graph?



MSTs in Data Science?

- Do we need to find MSTs in data science?
- Actually, yes! (Next lecture)

Prim's Algorithm



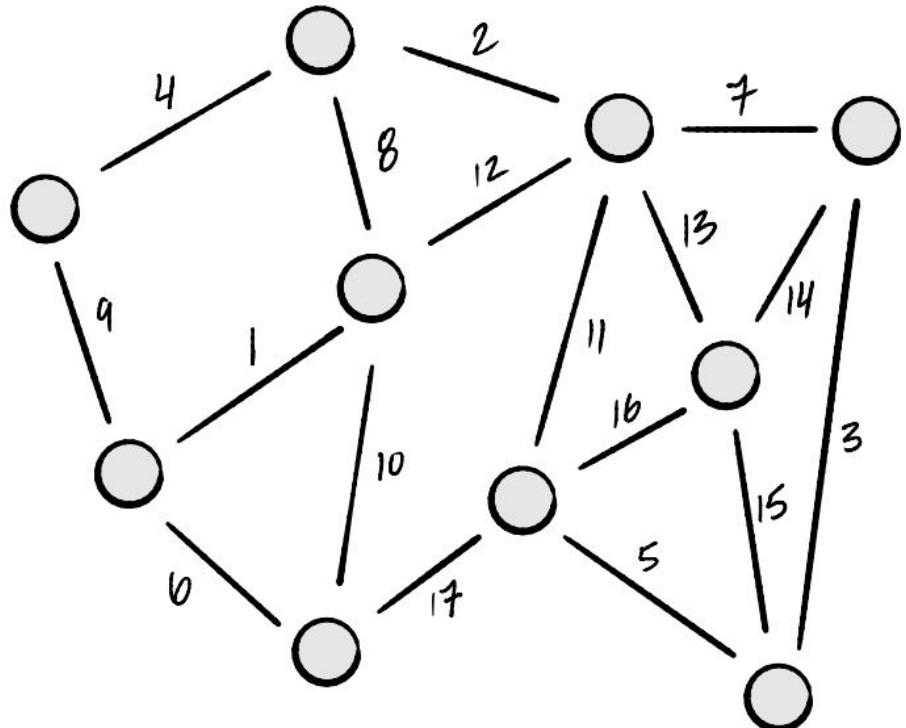
Building MSTs

- How do we build a MST efficiently?
- We'll adopt a **greedy** approach.
 - Build a tree edge-by-edge.
 - At every step, doing what looks best at the moment.
- This strategy isn't guaranteed to work in all of life's situations, but it works for building MSTs.

Two Greedy Approaches

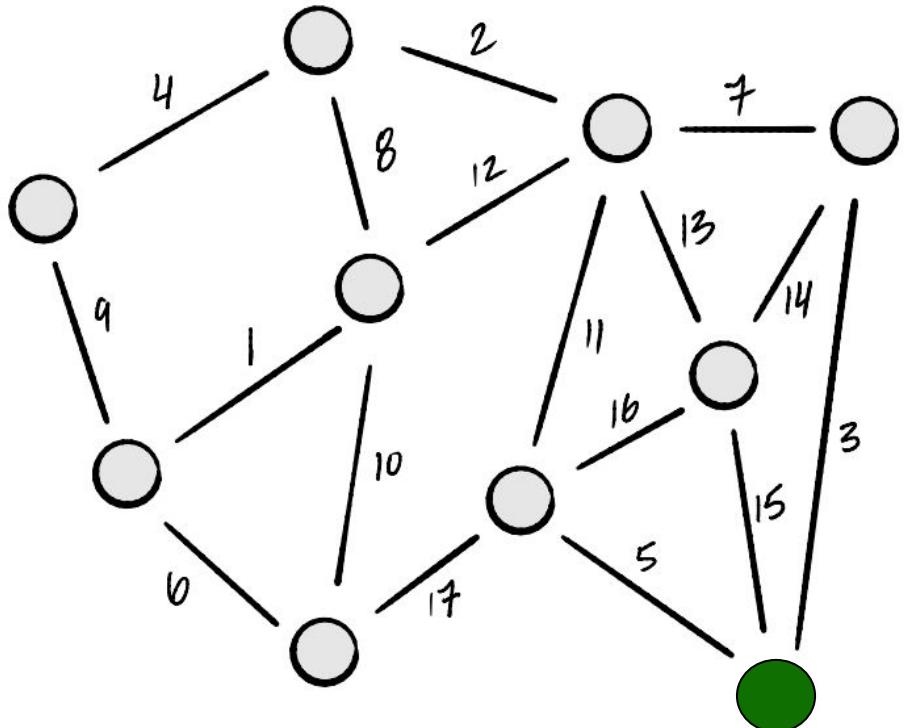
- We'll look at two greedy algorithms:
 - **Today:** *Prim's Algorithm*
 - Next time: Kruskal's Algorithm
- Differ in the order in which edges are added to tree.
- Also differ in time complexity.

Prim's Algorithm, Informally



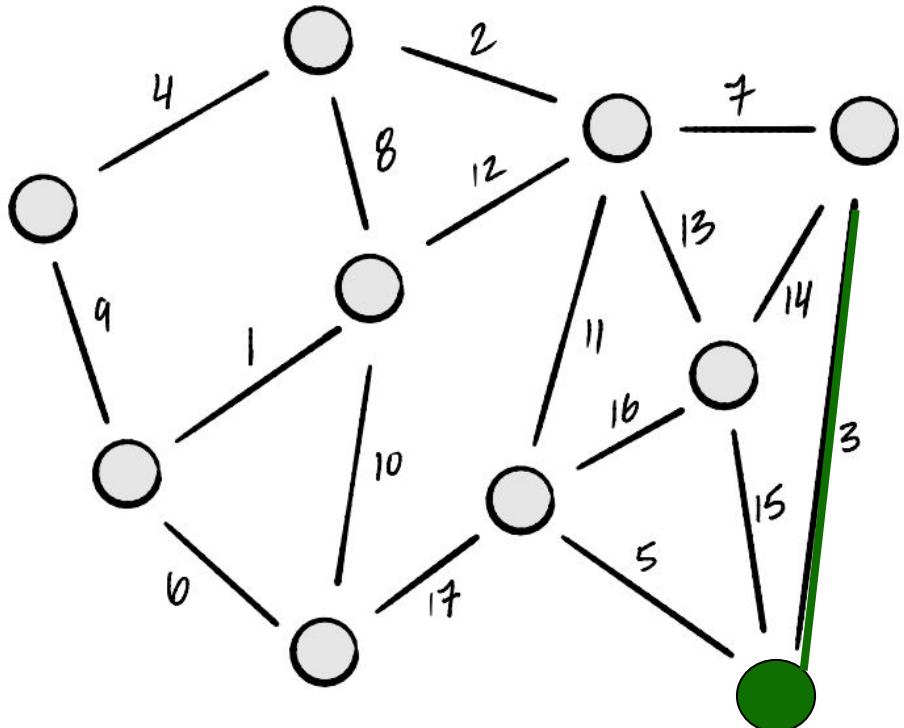
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add lightest edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



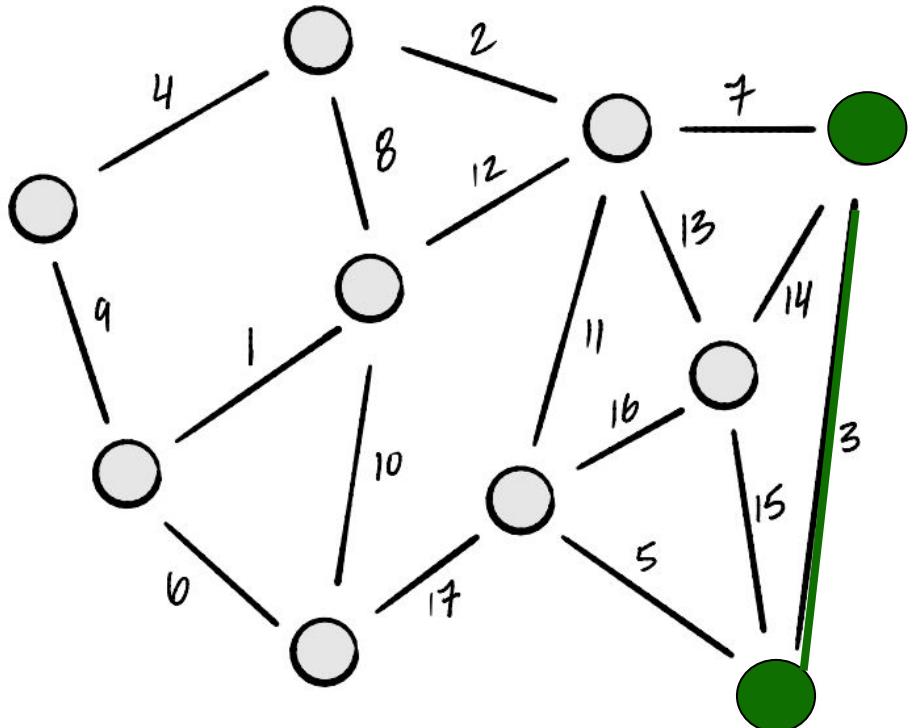
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



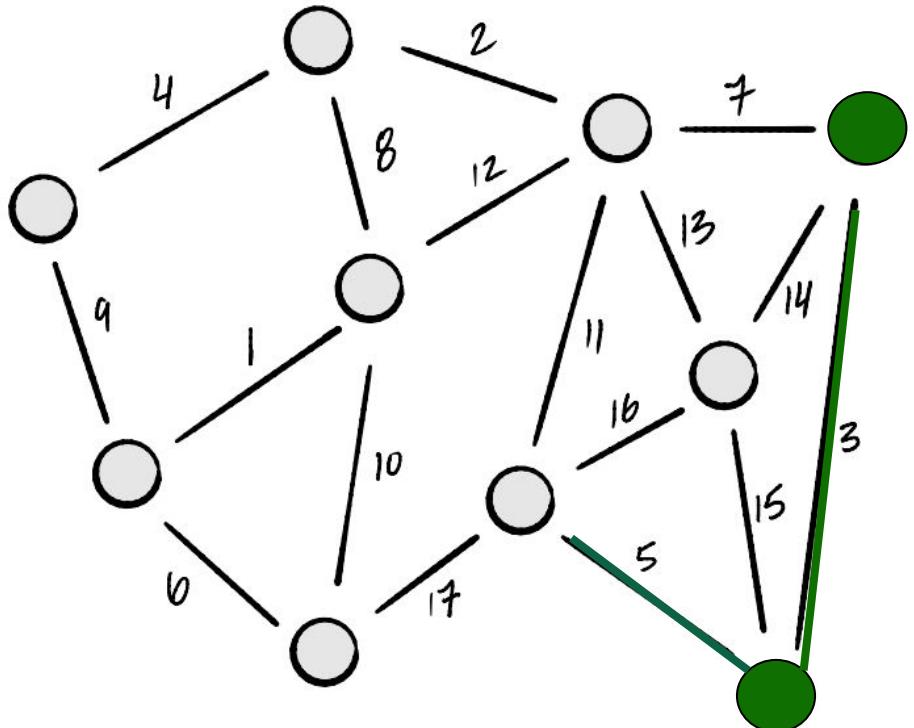
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



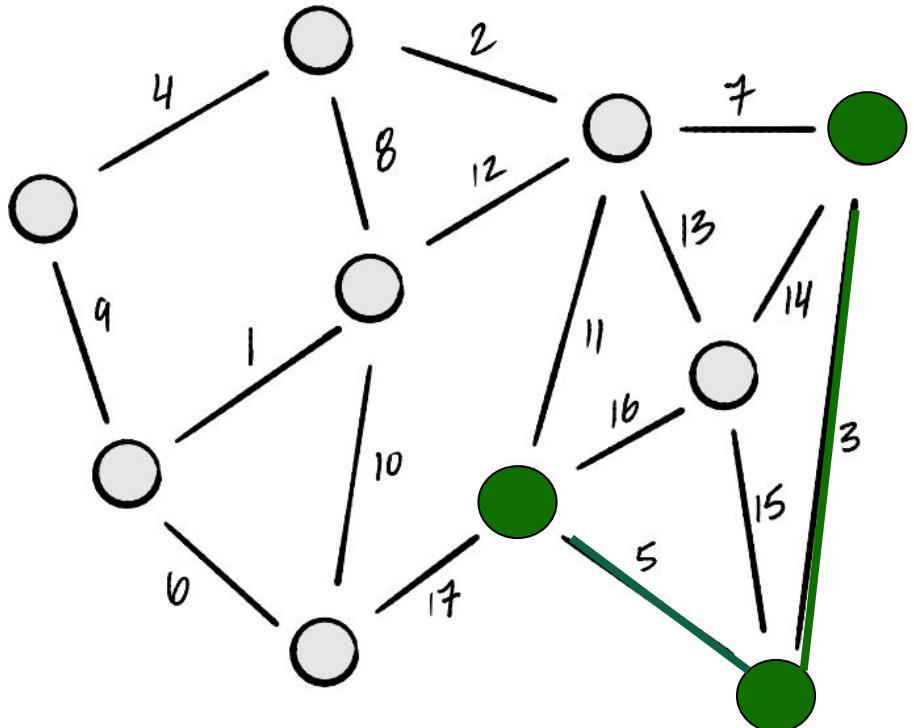
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



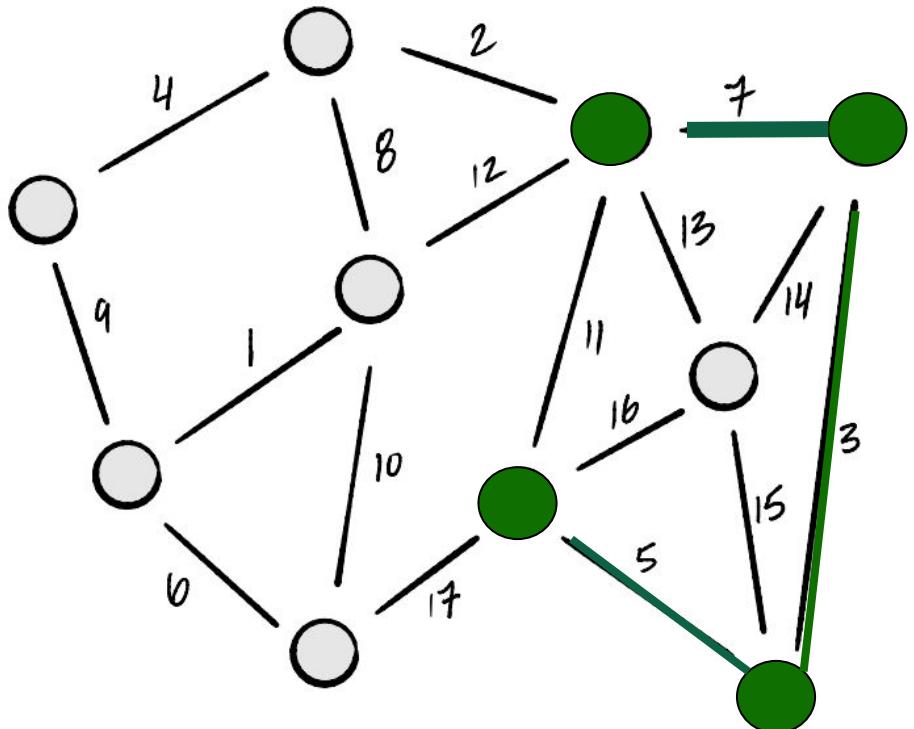
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



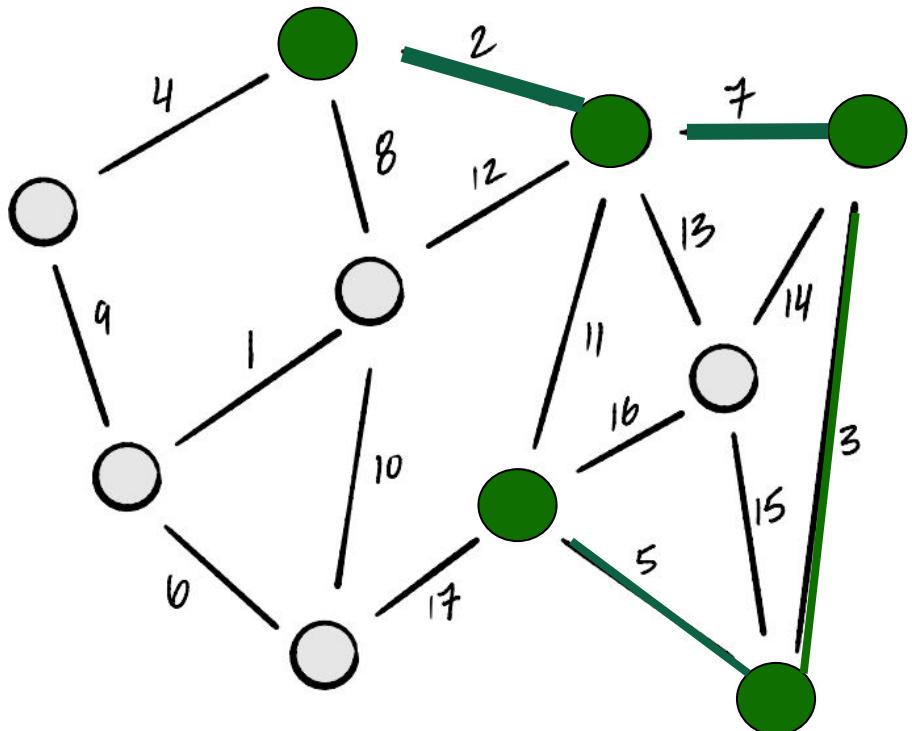
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



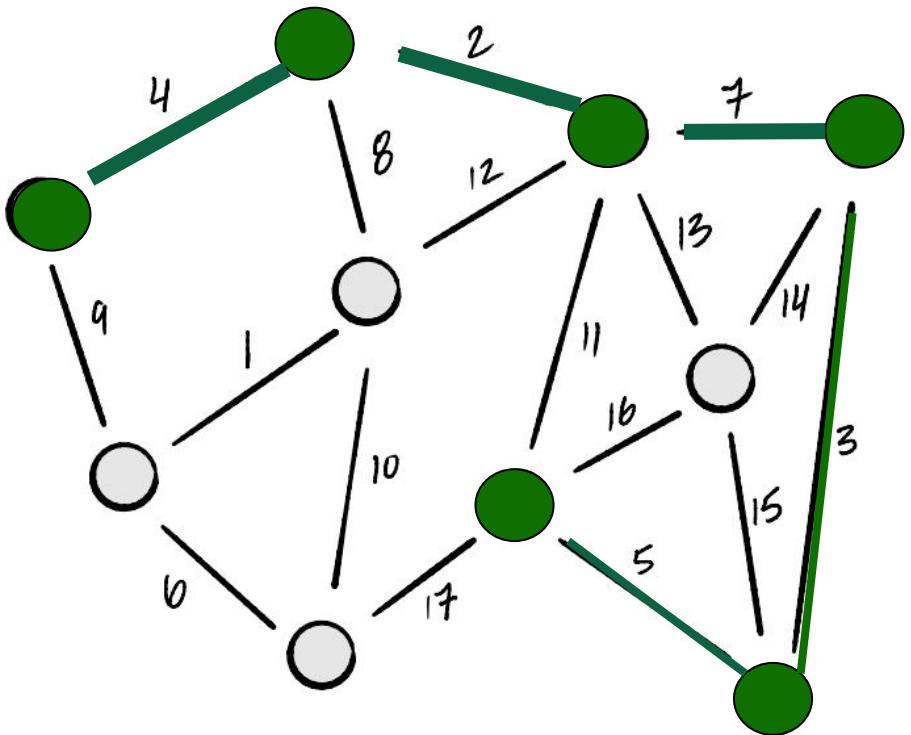
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



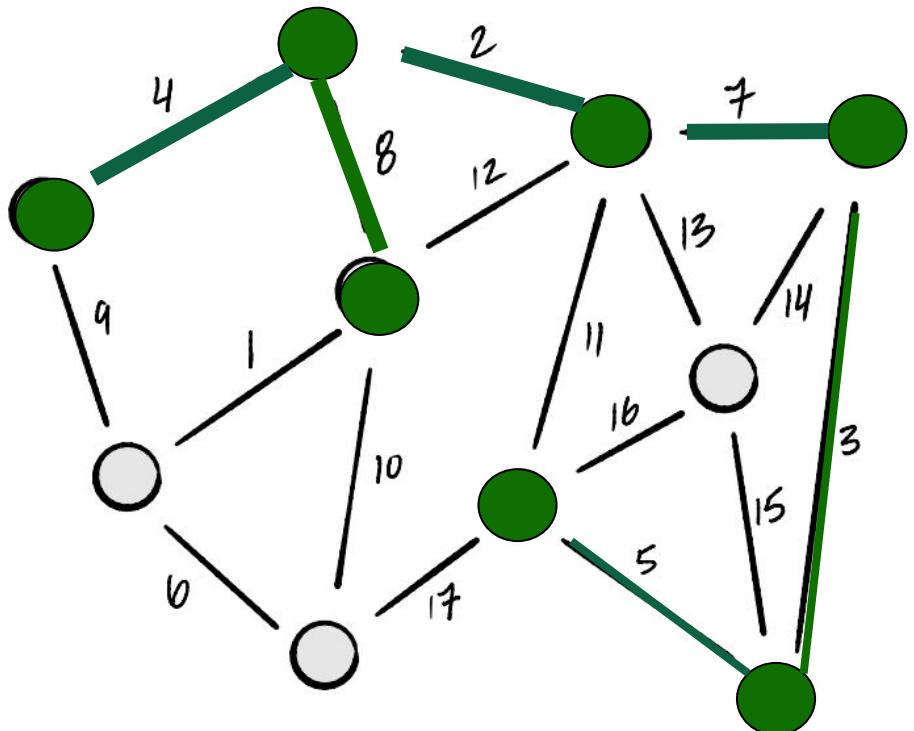
- Start by picking any node to add to "tree", T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - "Lightest" = edge with the smallest weight.

Prim's Algorithm, Informally



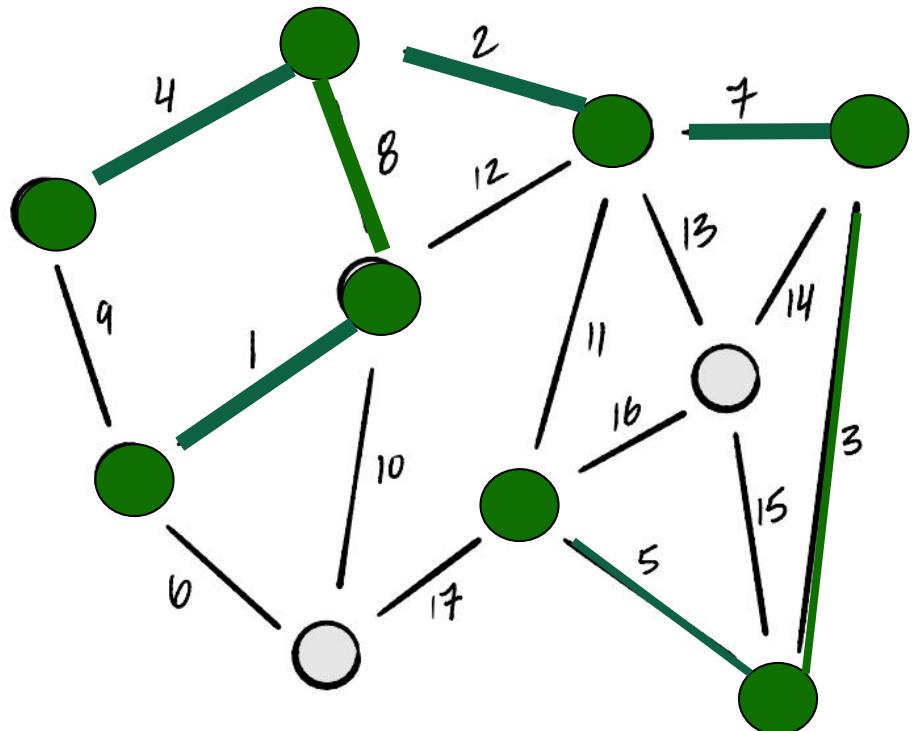
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



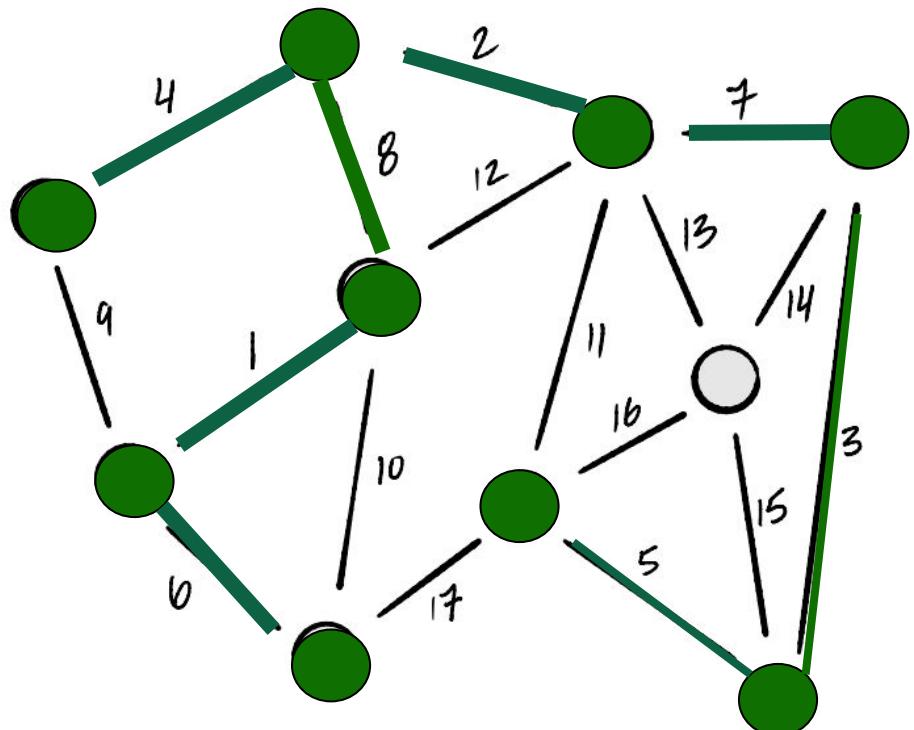
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



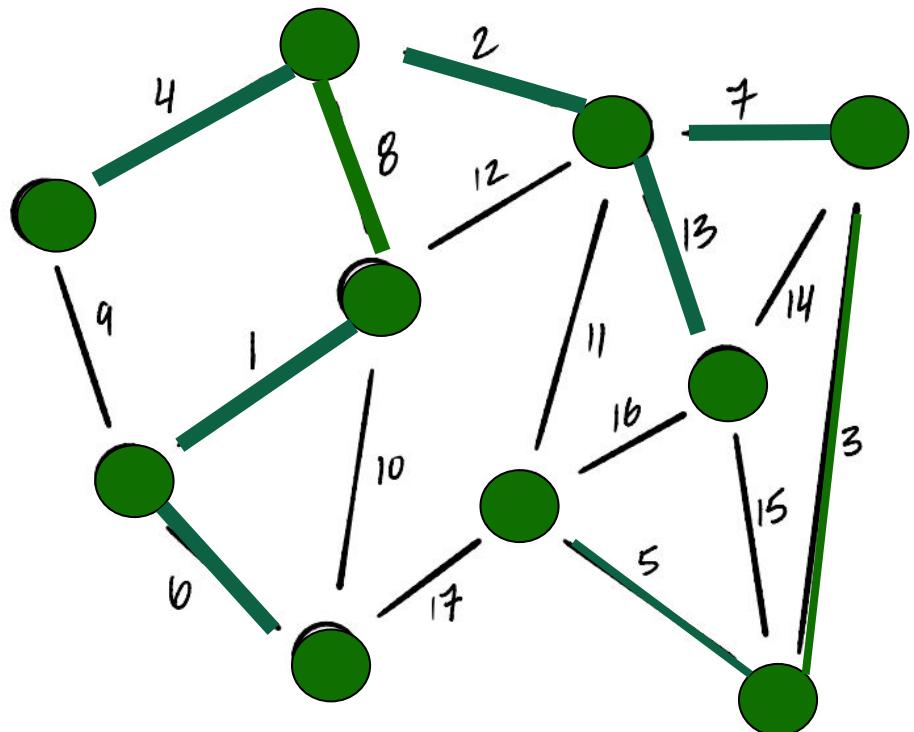
- Start by picking any node to add to "tree", T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - "Lightest" = edge with the smallest weight.

Prim's Algorithm, Informally



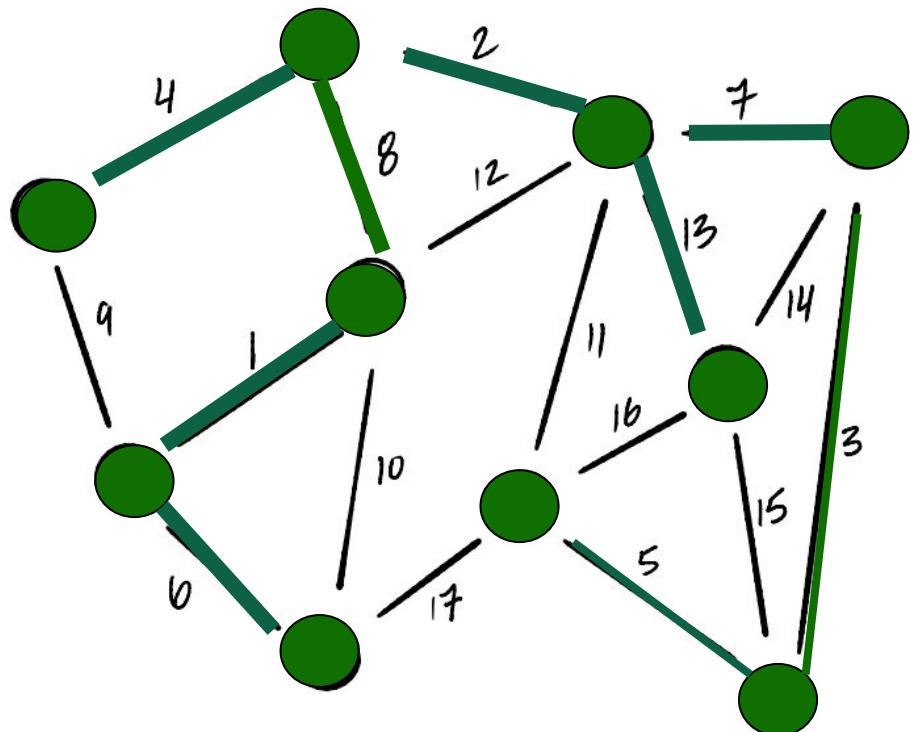
- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally



- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.

Prim's Algorithm, Informally

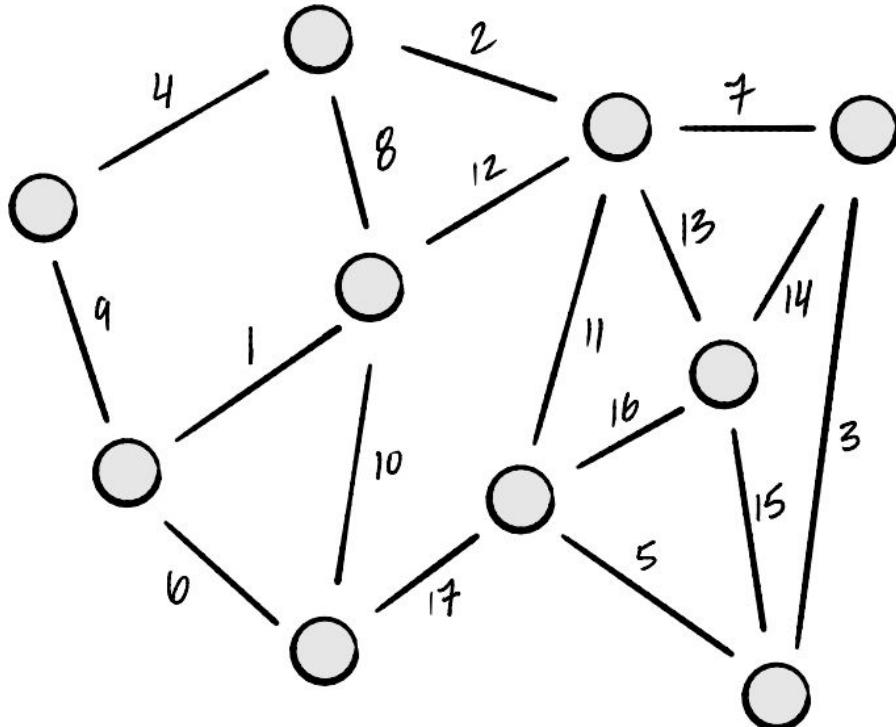


- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.
- Is this guaranteed to work?** Yes, as we'll see.

Prim's Algorithm, Equivalently

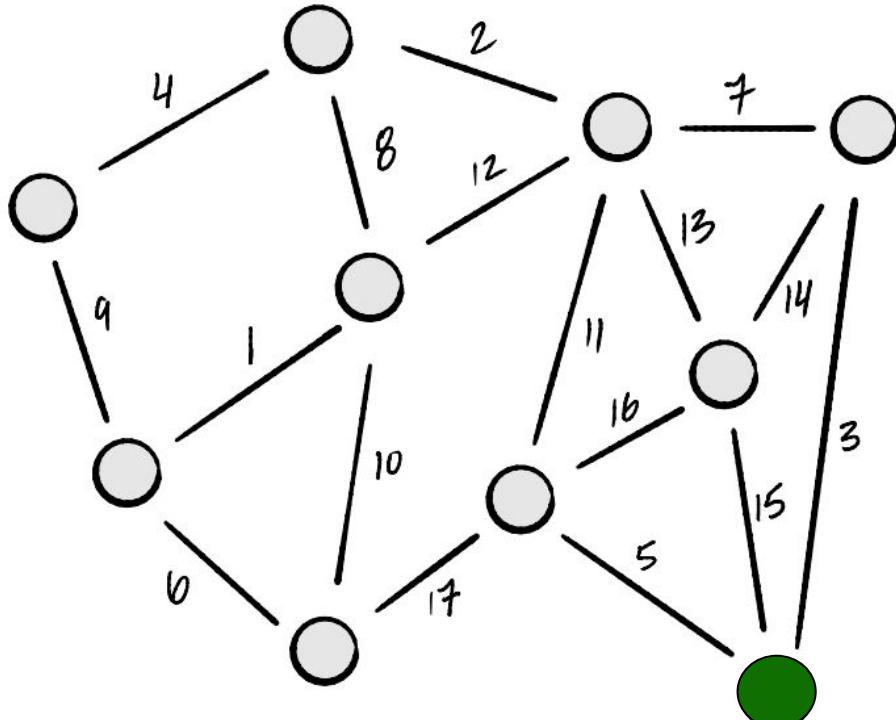
- **For each node u , store:**
 - estimated cost of adding node to tree;
 - estimated “predecessor” v in the tree.
- **At each step,**
 - Find node with *smallest* estimated cost.
 - Add to tree T by including edge with estimated “predecessor”.
 - Update cost of neighbors.
- Same as adding lightest edge from T to outside T at every step!

Prim's Algorithm, Equivalently



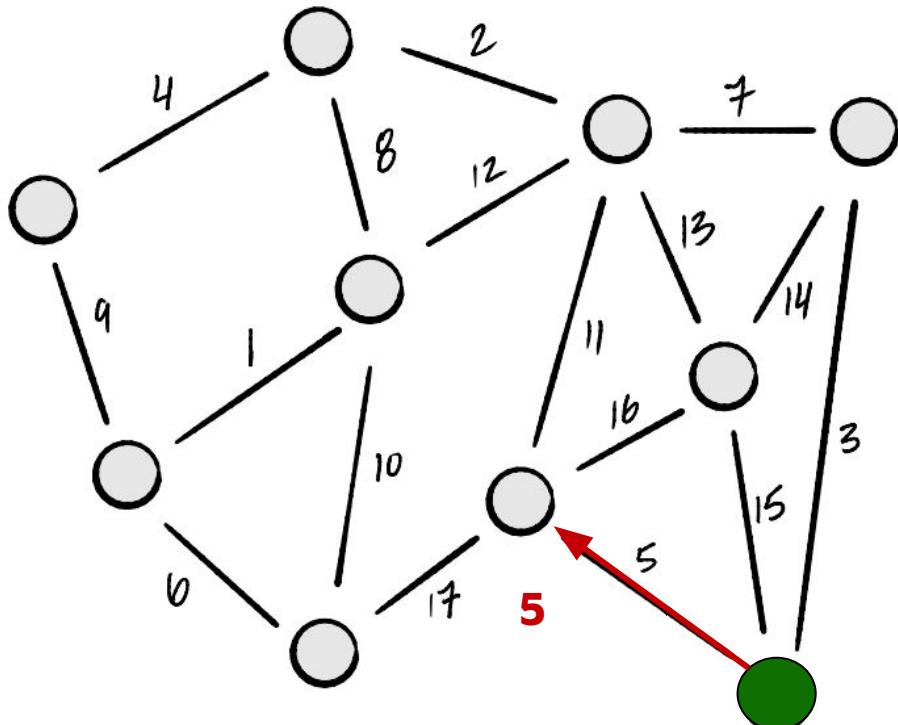
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u 's neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



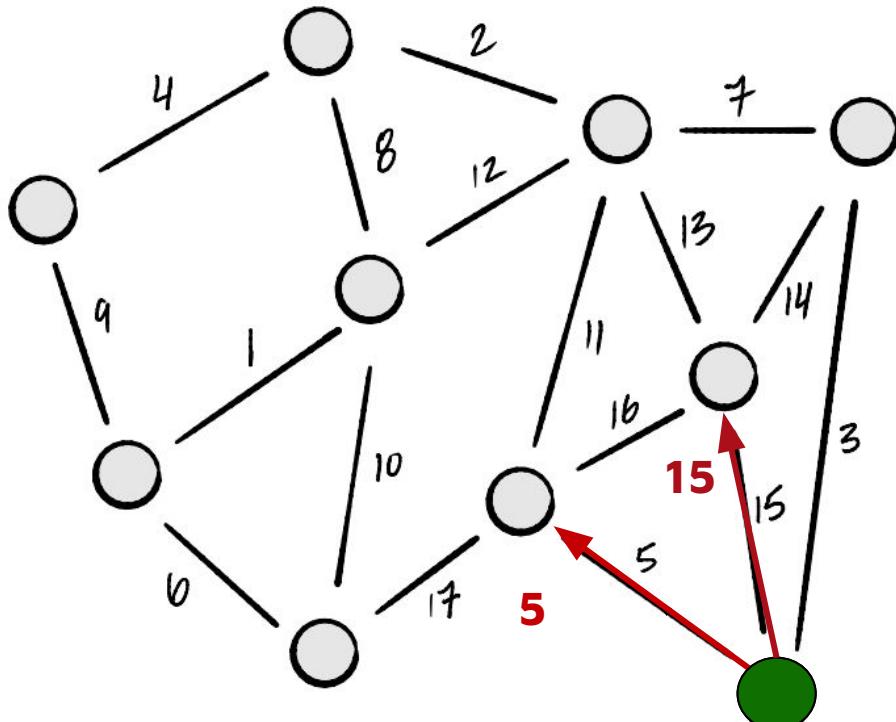
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



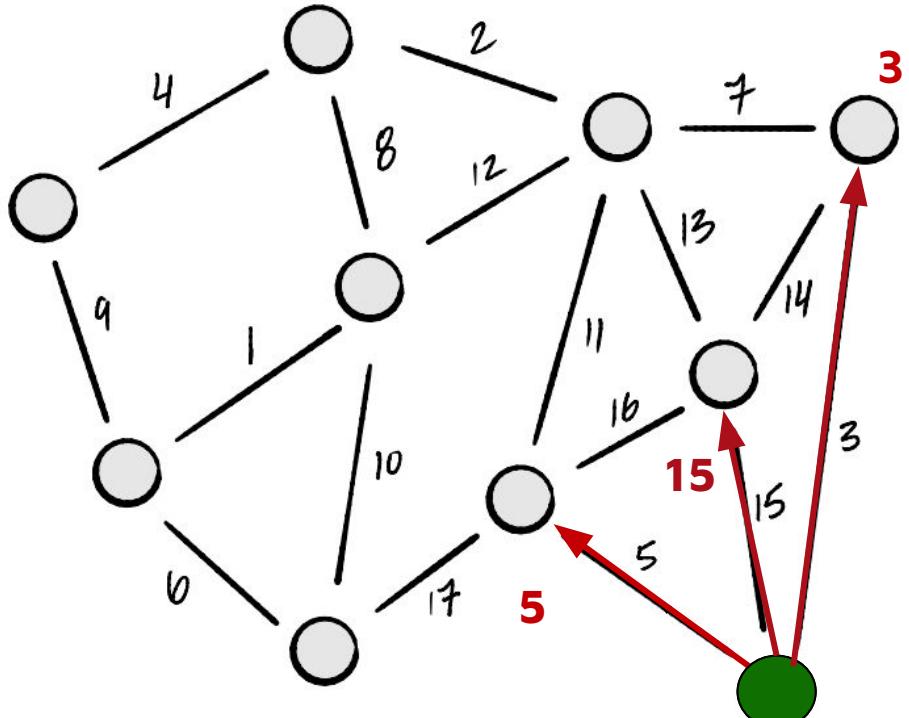
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



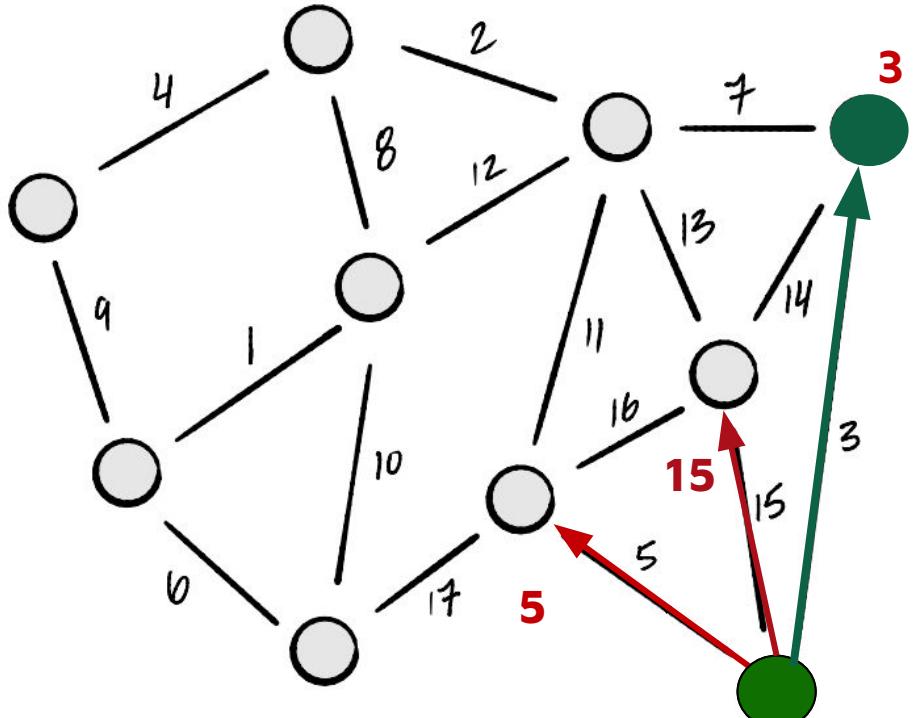
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



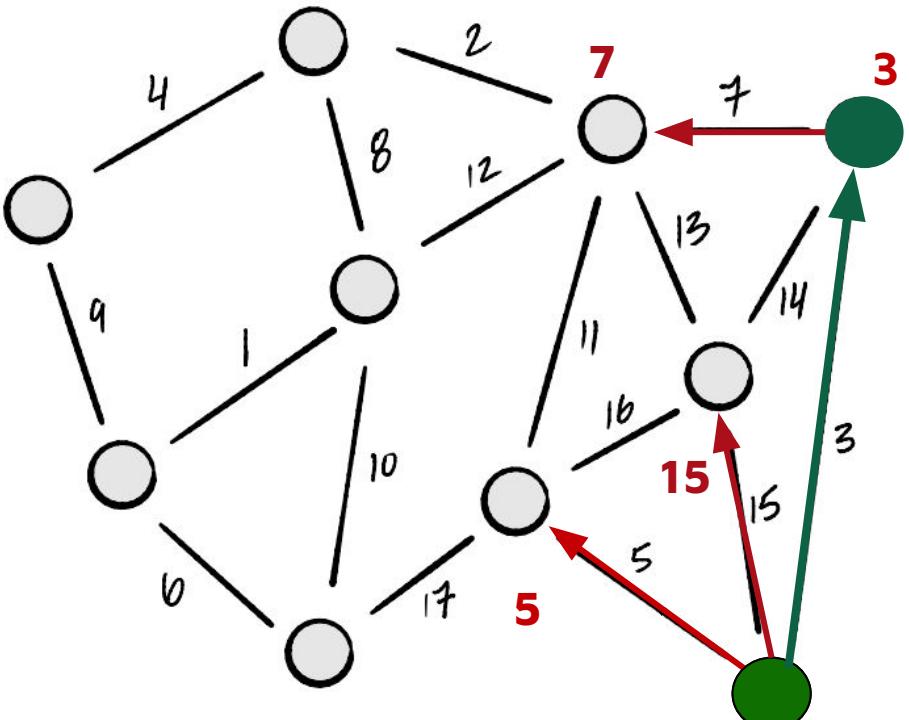
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



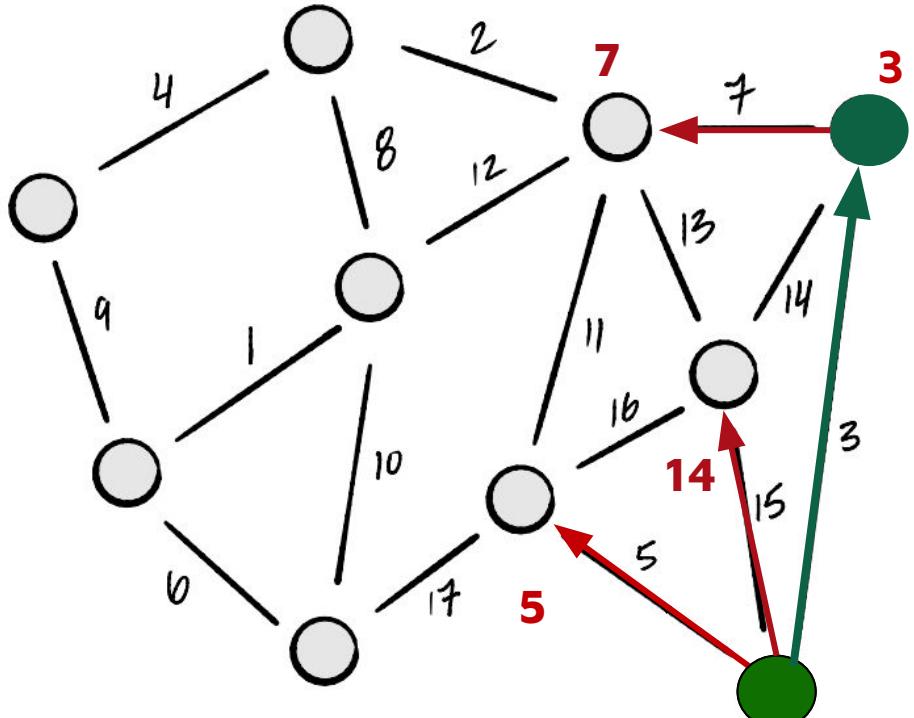
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



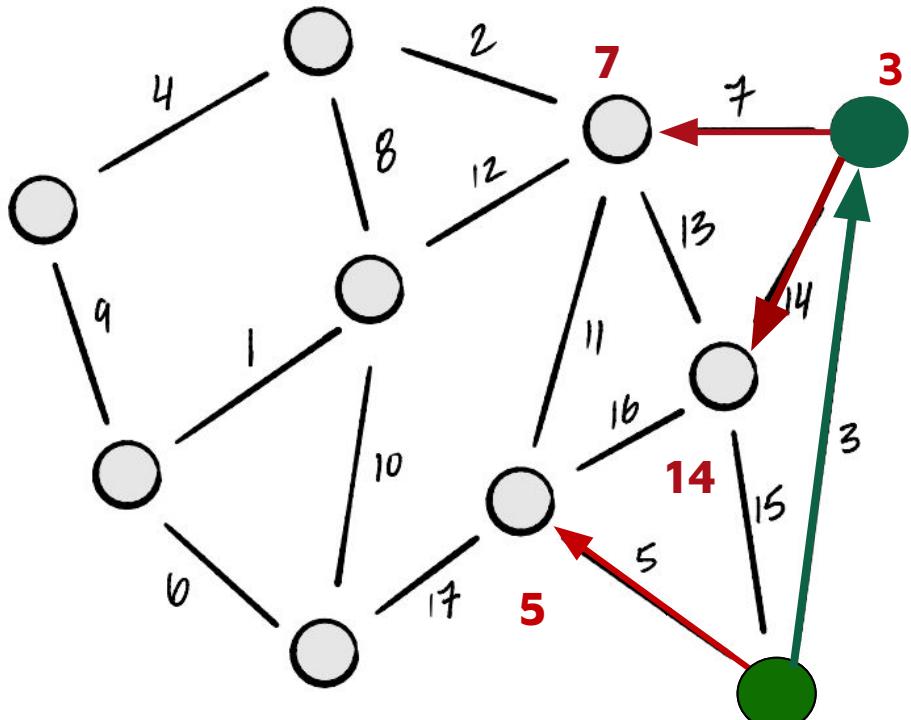
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



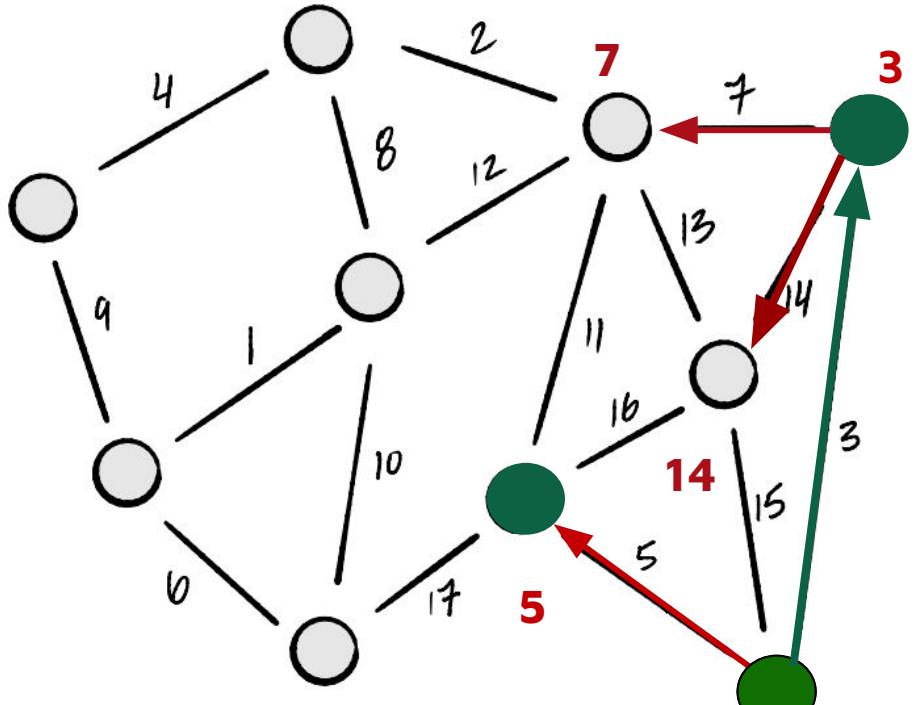
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u 's neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



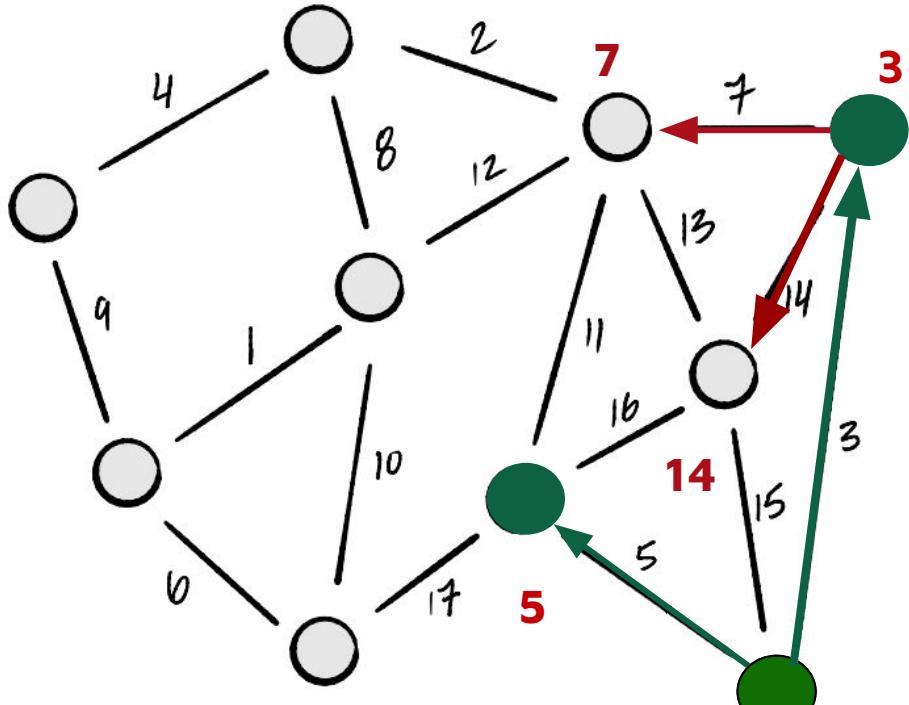
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



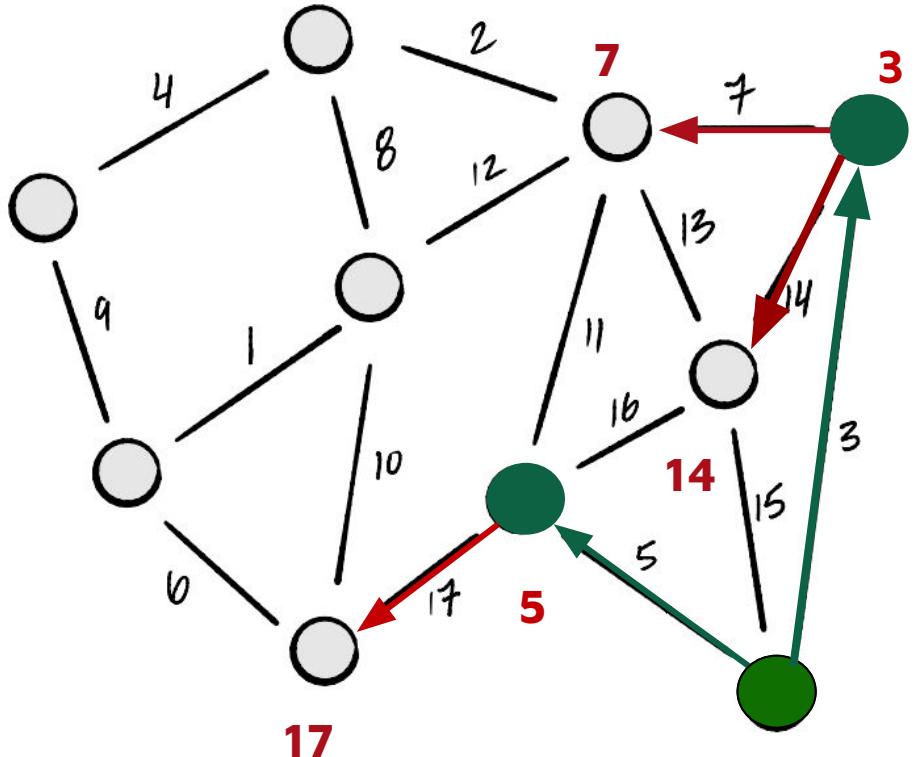
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u 's neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



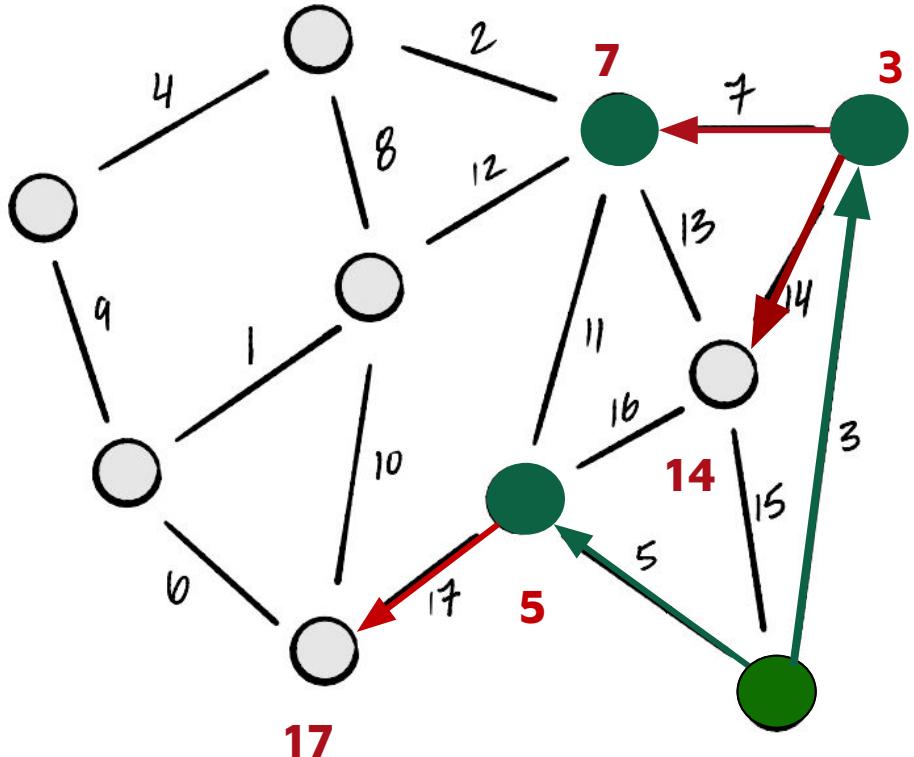
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



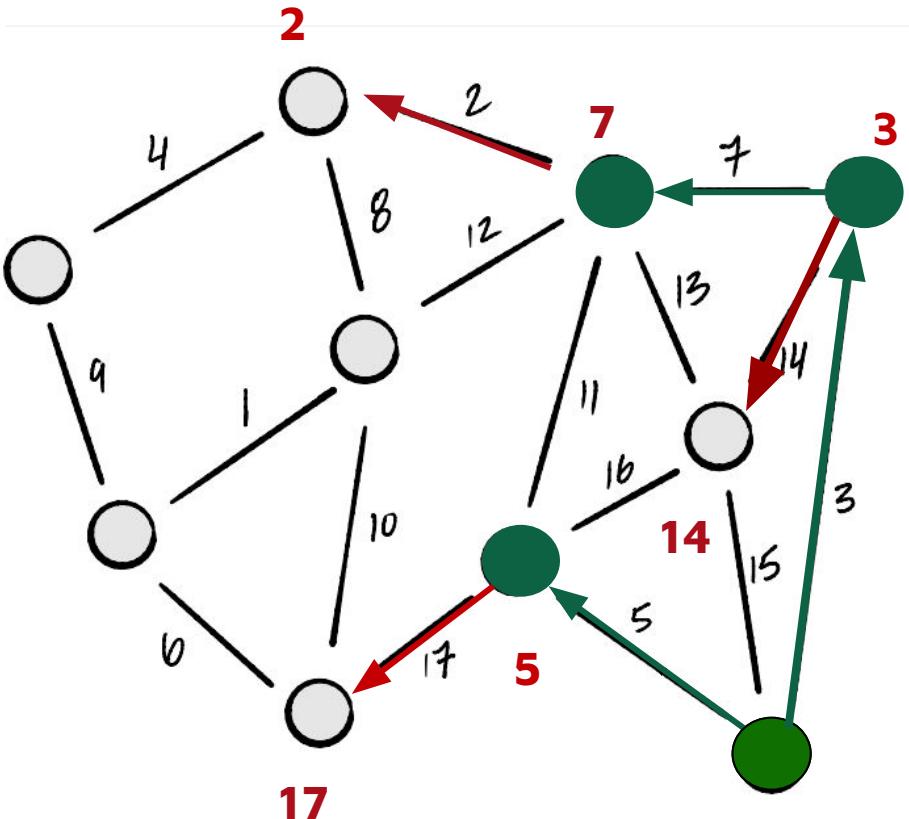
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



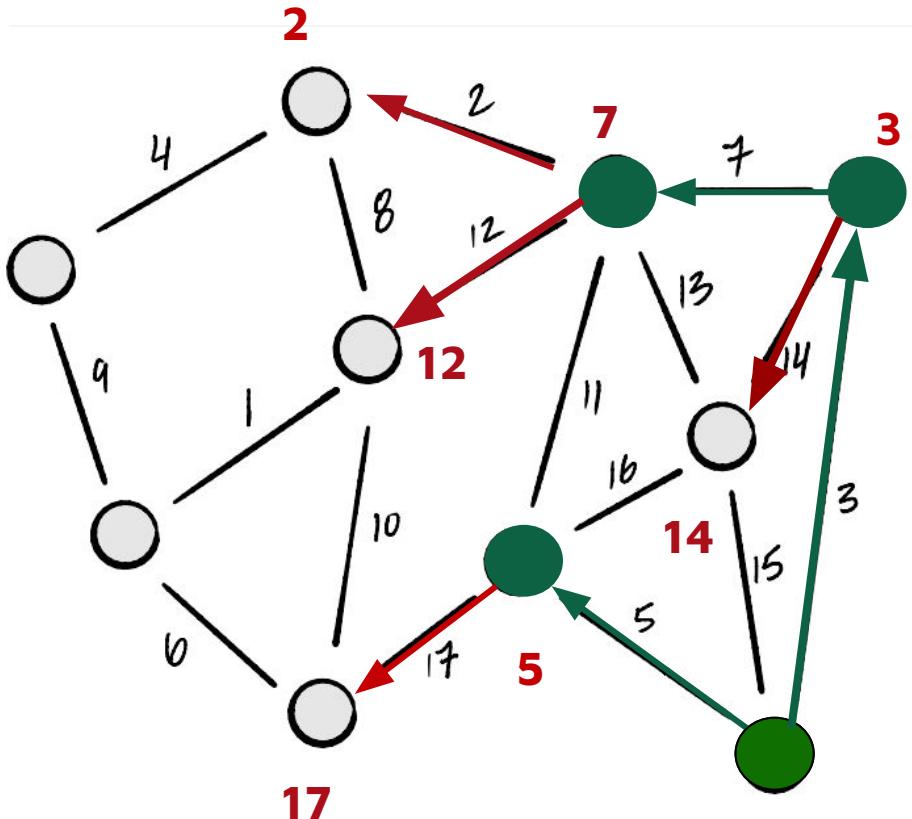
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



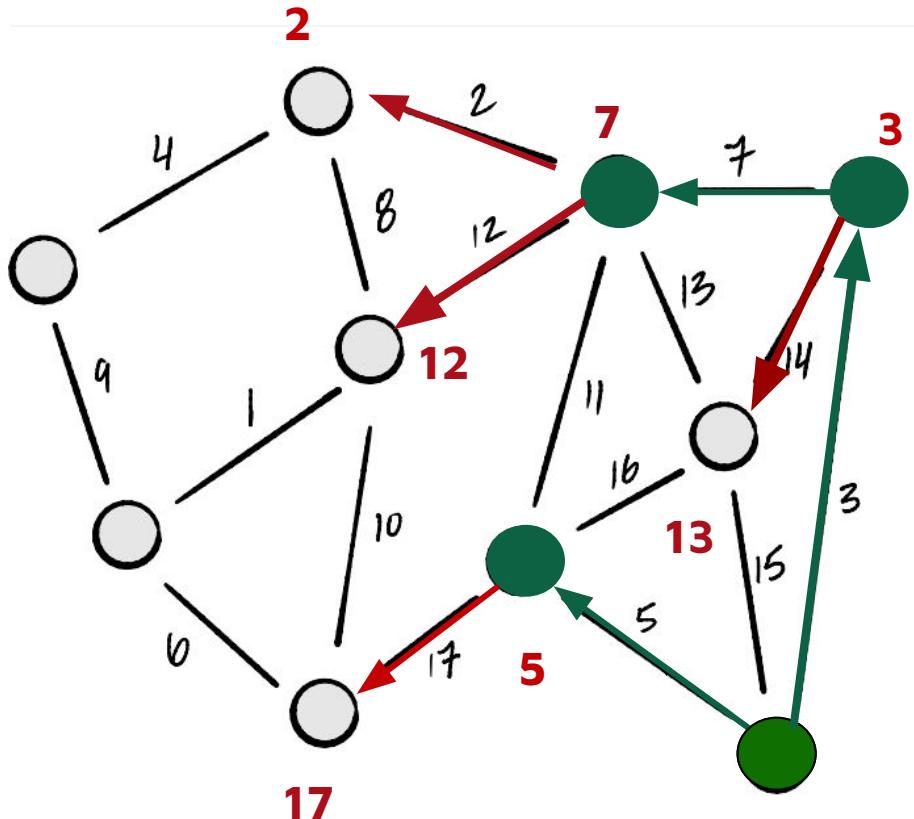
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



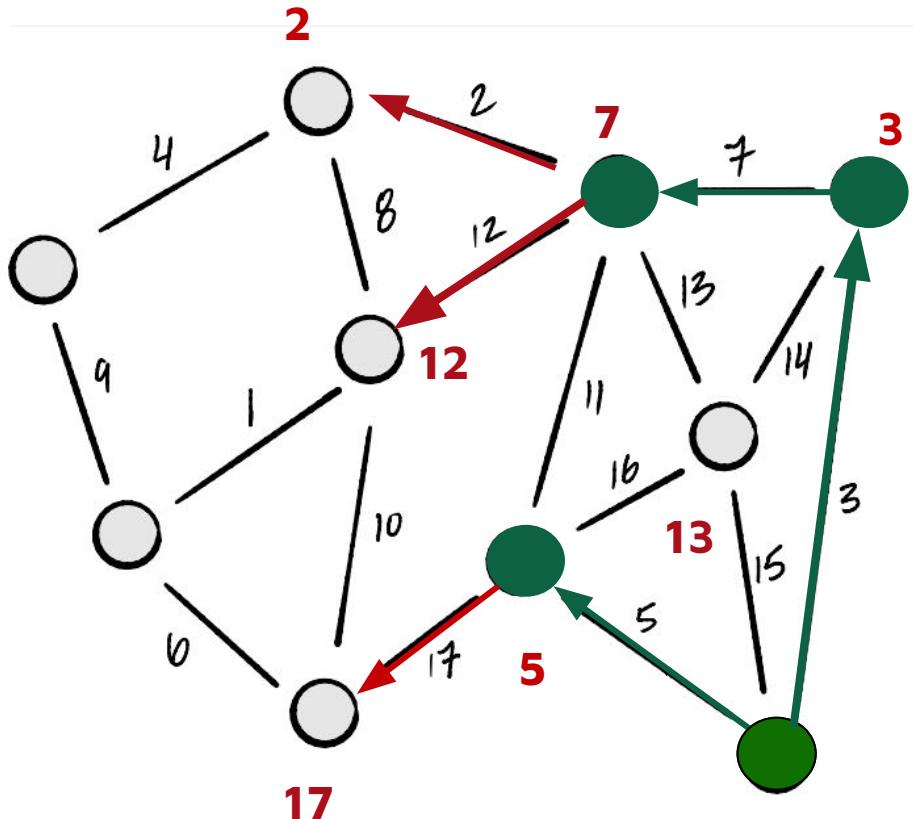
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



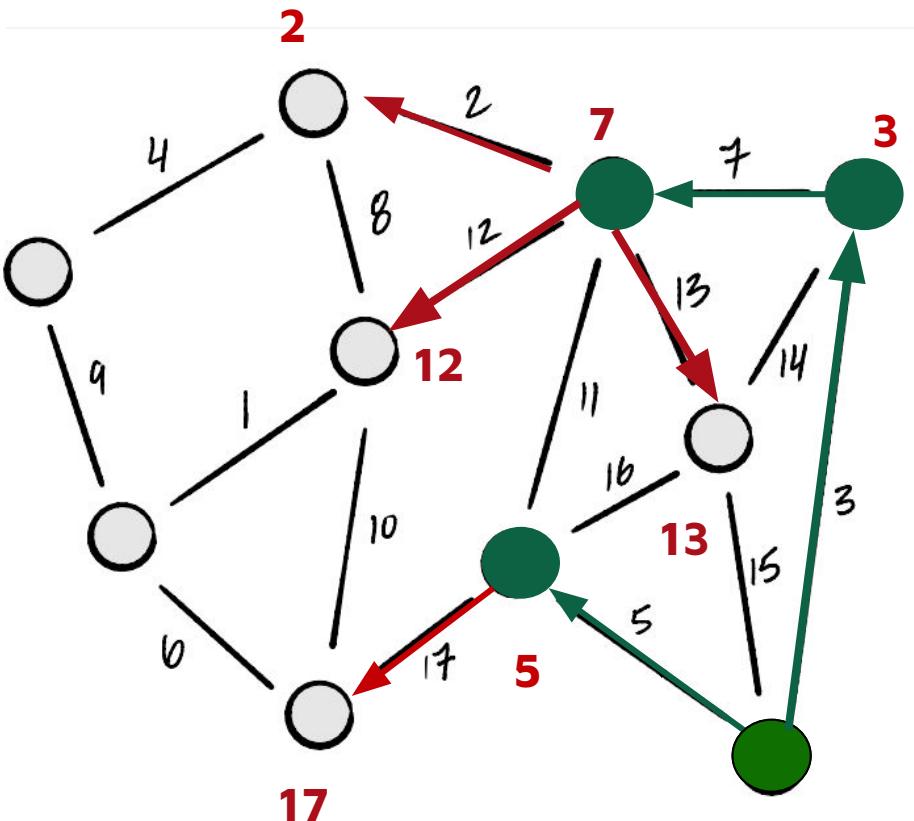
- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Prim's Algorithm, Equivalently



- While T is not a tree:
 - find the node $u \notin T$ with smallest cost.
 - add the edge between u and its estimated “predecessor” to T .
 - update estimated cost/pred. of u ’s neighbors which are not already in the tree.

Recall: Priority Queues

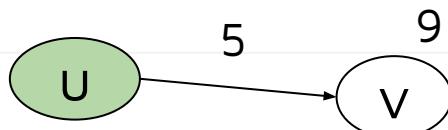
- How do we efficiently find node with smallest cost?
- Priority Queues:
 - `PriorityQueue(priorities)`: creates priority queue from dictionary whose values are priorities.
 - `.extract_min()`: removes and returns key with smallest value.
 - `.decrease_priority(key, value)`: changes key's value.
- We'll use a priority queue to hold nodes not yet added to tree.

```
def prim(graph, weight):
    tree = UndirectedGraph()

    estimated_predecessor = {node: None for node in graph.nodes}
    cost = {node: float('inf') for node in graph.nodes}
    priority_queue = PriorityQueue(cost)

    while priority_queue:
        u = priority_queue.extract_min()
        if estimated_predecessor[u] is not None:
            tree.add_edge(estimated_predecessor[u], u)
        for v in graph.neighbors(u):
            if weight(u, v) < cost[v] and v not in tree.nodes:
                priority_queue.decrease_priority(v, weight(u, v))
                cost[v] = weight(u, v)
                estimated_predecessor[v] = u

    return tree
```



Prim and Dijkstra

- This is a lot like Dijkstra's Algorithm for s.p.d.!
- Both: at each step, extract node with smallest cost, update its edges. (**Prim**: only those edges to nodes not in tree).
- **Dijkstra** update of (u, v) :

$$\text{cost}[v] = \min(\text{cost}[v], \text{cost}[u] + \text{weight}(u, v))$$

- **Prim** update of (u, v) :

$$\text{cost}[v] = \min(\text{cost}[v], \text{weight}(u, v))$$

Dijkstra is similar to?

```
def dijkstra(graph, weights, source):
    est = {node: float('inf') for node in graph.nodes}
    est[source] = 0
    pred = {node: None for node in graph.nodes}

    priority_queue = PriorityQueue(est)
    while priority_queue:
        u = priority_queue.extract_min()
        for v in graph.neighbors(u):
            changed = update(u, v, weights, est, pred)
            if changed:
                priority_queue.change_priority(v, est[v])

    return est, pred
```

Time Complexity

Time Complexity

- A priority queue can be implemented using a heap.
- If a **binary min-heap** is used:
 - `PriorityQueue(est)` takes $\Theta(V)$ time.
 - `.extract_min()` takes $O(\log V)$ time.
 - `.decrease_priority()` takes $O(\log V)$ time.

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
    estimated_predecessor = {node: None for node in graph.nodes}  
    cost = {node: float('inf') for node in graph.nodes}  
    priority_queue = PriorityQueue(cost)
```

```
    while priority_queue:  
        u = priority_queue.extract_min()  
        if estimated_predecessor[u] is not None:  
            tree.add_edge(estimated_predecessor[u], u)  
        for v in graph.neighbors(u):  
            if weight(u, v) < cost[v] and v not in tree.nodes:  
                priority_queue.decrease_priority(v, weight(u, v))  
                cost[v] = weight(u, v)  
                estimated_predecessor[v] = u  
    return tree
```

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue: V times  
    u = priority_queue.extract_min()  
    if estimated_predecessor[u] is not None:  
        tree.add_edge(estimated_predecessor[u], u)  
    for v in graph.neighbors(u):  
        if weight(u, v) < cost[v] and v not in tree.nodes:  
            priority_queue.decrease_priority(v, weight(u, v))  
            cost[v] = weight(u, v)  
            estimated_predecessor[v] = u  
return tree
```

```
def prim(graph, weight):  
    tree = UndirectedGraph()  
  
    estimated_predecessor = {node: None for node in graph.nodes}  
    cost = {node: float('inf') for node in graph.nodes}  
    priority_queue = PriorityQueue(cost)  
  
    while priority_queue: V times  
        u = priority_queue.extract_min() log V times to run once  
        if estimated_predecessor[u] is not None:  
            tree.add_edge(estimated_predecessor[u], u)  
        for v in graph.neighbors(u):  
            if weight(u, v) < cost[v] and v not in tree.nodes:  
                priority_queue.decrease_priority(v, weight(u, v))  
                cost[v] = weight(u, v)  
                estimated_predecessor[v] = u  
  
    return tree
```

$\Theta(V)$

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue:
```

V times

```
    u = priority_queue.extract_min()
```

log V times to run once

```
    if estimated_predecessor[u] is not None:
```

```
        tree.add_edge(estimated_predecessor[u], u)
```

```
    for v in graph.neighbors(u):
```

E times

```
        if weight(u, v) < cost[v] and v not in tree.nodes:
```

```
            priority_queue.decrease_priority(v, weight(u, v))
```

```
            cost[v] = weight(u, v)
```

```
            estimated_predecessor[v] = u
```

```
return tree
```

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue:
```

V times

```
    u = priority_queue.extract_min()
```

log V times to run once

```
    if estimated_predecessor[u] is not None:
```

```
        tree.add_edge(estimated_predecessor[u], u)
```

```
    for v in graph.neighbors(u):
```

E times

```
        if weight(u, v) < cost[v] and v not in tree.nodes:
```

**log V to
run once**

```
            priority_queue.decrease_priority(v, weight(u, v))
```

```
            cost[v] = weight(u, v)
```

```
            estimated_predecessor[v] = u
```

```
return tree
```

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue:
```

V times

```
    u = priority_queue.extract_min()
```

log V times to run once

```
    if estimated_predecessor[u] is not None:
```

```
        tree.add_edge(estimated_predecessor[u], u)
```

```
    for v in graph.neighbors(u):
```

E times

```
        if weight(u, v) < cost[v] and v not in tree.nodes:
```

**log V to
run once**

```
            priority_queue.decrease_priority(v, weight(u, v))
```

```
            cost[v] = weight(u, v)
```

```
            estimated_predecessor[v] = u
```

```
return tree
```

$O(V + V \log V + E \log V)$

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue:
```

V times

```
    u = priority_queue.extract_min()
```

log V times to run once

```
    if estimated_predecessor[u] is not None:
```

```
        tree.add_edge(estimated_predecessor[u], u)
```

```
    for v in graph.neighbors(u):
```

E times

```
        if weight(u, v) < cost[v] and v not in tree.nodes:
```

**log V to
run once**

```
            priority_queue.decrease_priority(v, weight(u, v))
```

```
            cost[v] = weight(u, v)
```

```
            estimated_predecessor[v] = u
```

```
return tree
```

$O(V \log V + E \log V)$

Time Complexity

- Using a binary heap...
- Overall: $\Theta(V \log V + E \log V)$.
- Since graph is assumed **connected**, $E = \Omega(V)$.
 - $E \geq V-1$
- So this simplifies to $\Theta(E \log V)$.

Fibonacci Heaps

- A priority queue can be implemented using a heap.
- If a **Fibonacci** min-heap is used:
 - `PriorityQueue(est)` takes $\Theta(V)$ time.
 - `.extract_min()` takes $\Theta(\log V)$ time.
 - *amortized*
 - **`.decrease_priority()` takes $O(1)$ time.**

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue:
```

V times

```
    u = priority_queue.extract_min()
```

log V times to run once

```
    if estimated_predecessor[u] is not None:
```

```
        tree.add_edge(estimated_predecessor[u], u)
```

```
        for v in graph.neighbors(u):
```

E times

```
            if weight(u, v) < cost[v] and v not in tree.nodes:
```

**constant to
run once**

```
                priority_queue.decrease_priority(v, weight(u, v))
```

```
                cost[v] = weight(u, v)
```

```
                estimated_predecessor[v] = u
```

```
    return tree
```

```
def prim(graph, weight):  
    tree = UndirectedGraph()
```

$\Theta(V)$

```
estimated_predecessor = {node: None for node in graph.nodes}  
cost = {node: float('inf') for node in graph.nodes}  
priority_queue = PriorityQueue(cost)
```

```
while priority_queue:
```

V times

```
    u = priority_queue.extract_min()
```

log V times to run once

```
    if estimated_predecessor[u] is not None:
```

```
        tree.add_edge(estimated_predecessor[u], u)
```

```
        for v in graph.neighbors(u):
```

E times

```
            if weight(u, v) < cost[v] and v not in tree.nodes:
```

**constant to
run once**

```
                priority_queue.decrease_priority(v, weight(u, v))
```

```
                cost[v] = weight(u, v)
```

```
                estimated_predecessor[v] = u
```

```
return tree
```

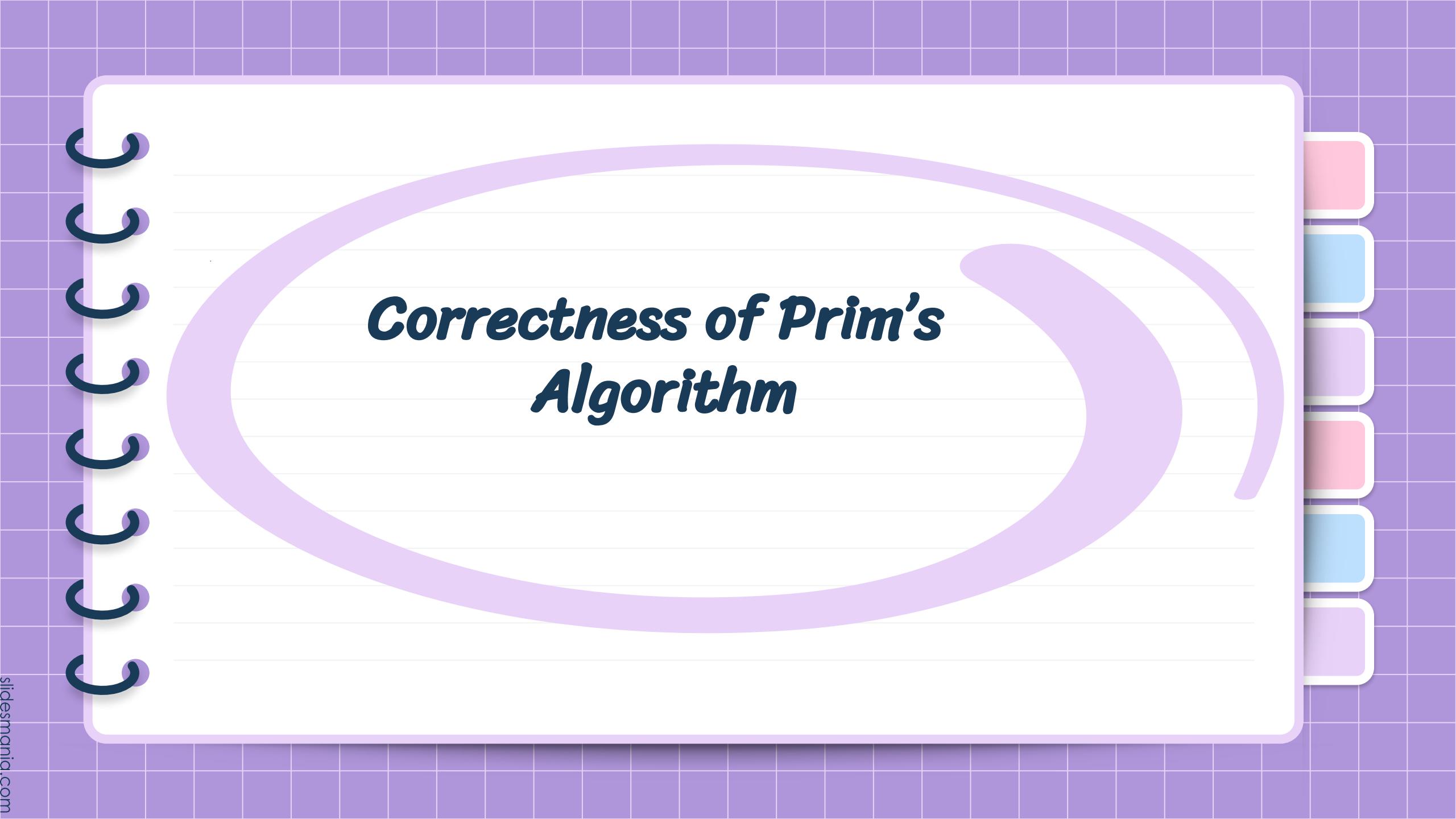
$O(V \log V + E)$

Time Complexity

- Using a Fibonacci heap...
- Overall: $\Theta(V \log V + E)$.

Fibonacci vs. Binary Heaps

- Using Fibonacci heaps improves time complexity when graph is dense.
- E.g., if $E = \Theta(V^2)$:
 - Prim's with Fibonacci: $\Theta(E) = \Theta(V^2)$
 - Prim's with binary heap: $\Theta(E \log E) = \Theta(V^2 \log V)$. -*slower*
- But Fibonacci heaps are **hard** to implement; have large constants.
- Binary heaps used more in practice despite complexity.

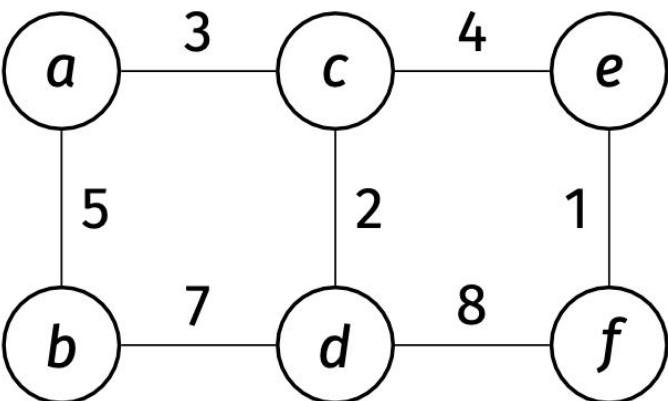


Correctness of Prim's Algorithm

Being Greedy

- At every step, we add the lightest edge.
- Is this “safe”?
- **Yes! This is guaranteed to find an MST.**

Promising Subtrees



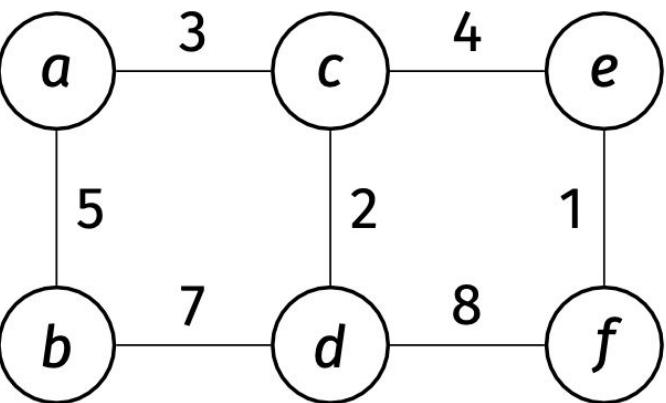
- Let $G = (V, E, \omega)$ be a weighted graph.
- A subgraph $T' = (V', E')$ is **promising** if it is “part” of some MST.
 - That is, it is an “MST in progress”
 - Not necessarily a tree!
- That is, there exists an MST $T = (V, E_{\text{mst}})$ such that $E' \subset E_{\text{mst}}$.
- **Hint:** a “promising subtree” where $V' = V$ is an MST!

Main idea

Prim's starts with a promising subtree T . At each step, adds lightest edge from a node within T to a node outside of T .

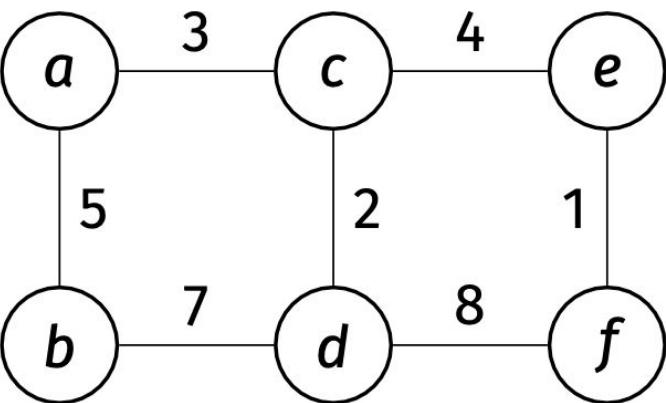
We'll show each new edge results in a larger promising sub-tree. Eventually the promising subtree becomes a full MST.

Claim



- Let $G = (V, E, \omega)$ be a weighted graph.
- Suppose $T' = (V', E')$ is a promising subtree for an MST of G .
- Let $e = (u, v)$ be a **lightest edge** from a node in T' to a node outside of T' (Prim).
- Then adding (u, v) to T' results in another **promising subtree**.

Proof



- Suppose T_{mst} is an MST that includes T'
- If T_{mst} includes e , we're done: $T' + e$ is promising.
- If it doesn't include e , it must have an edge f that connects T' to rest of the graph.
- Swap f with e in T_{mst} . The result is a tree, and it must be a MST since $\omega(e) \leq \omega(f)$.
- So there is an MST that contains $T' + e$.

Thank you!

Do you have any questions?

CampusWire!