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Choose a set of roads so that:

● Every building must get coffee.
● No loops
● Total cost is minimized.

One way: 
● 1000 + 700 + 500 + 600=2800
● Not the shortest

Better path:
● 200 + 300 + 400 + 500=1400

Solution: compute a minimum 
spanning tree.
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tree.

● Adding a new edge to a tree 
creates a cycle (no longer a 
tree).

● Removing an edge from a tree 
disconnects it (no longer a tree).
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Spanning Trees

● Let 𝐺 = (𝑉 , 𝐸) be a connected graph. A spanning tree of 
𝐺 is a tree 𝑇 = (𝑉 , 𝐸𝑇) with the same nodes as 𝐺, and a 
subset of 𝐺′𝑠 edges.
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𝐺 is a tree 𝑇 = (𝑉 , 𝐸𝑇) with the same nodes as 𝐺, and a 
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If 𝐺 = (𝑉 , 𝐸, 𝜔) is a weighted undirected graph, the cost (or weight) of 
a spanning tree is the total weight of the edges in the spanning tree.
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If 𝐺 = (𝑉 , 𝐸, 𝜔) is a weighted undirected graph, the cost (or weight) of 
a spanning tree is the total weight of the edges in the spanning tree.
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Minimum Spanning Tree
●  The minimum spanning tree problem is as follows:

○ Given: A weighted, undirected graph 𝐺 = (𝑉 , 𝐸, 𝜔).
○ Compute: a spanning tree of 𝐺 with minimum cost 

(i.e., minimum total edge weight).

●  For a given graph, the MST may not be unique.
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Question
Suppose the edges of a graph 𝐺 = (𝑉 , 𝑒, 𝜔) all have the same 
weight. How can we compute an MST of the graph?
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MSTs in Data Science?

●  Do we need to find MSTs in data science?
●  Actually, yes! (Next lecture)
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Prim’s Algorithm
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Building MSTs

●  How do we build a MST efficiently?

●  We’ll adopt a greedy approach.
○ Build a tree edge-by-edge.
○ At every step, doing what looks best at the moment.

●  This strategy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.
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Two Greedy Approaches

●  We’ll look at two greedy algorithms:
○ Today: Prim’s Algorithm
○ Next time: Kruskal’s Algorithm

●  Differ in the order in which edges are added to tree.

●  Also differ in time complexity.
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Prim’s Algorithm, Informally

● Start by picking any node to add to 
“tree”, 𝑇.

● While 𝑇 is not a spanning tree, 
greedily add lightest edge from a 
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the 

smallest weight.
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Prim’s Algorithm, Informally

● Start by picking any node to add to 
“tree”, 𝑇.

● While 𝑇 is not a spanning tree, 
greedily add lightest edge from a 
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the 

smallest weight.

● Is this guaranteed to work? Yes, as 
we’ll see.
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Prim’s Algorithm, Equivalently

● For each node 𝑢, store:
○ estimated cost of adding node to tree;
○ estimated “predecessor” 𝑣 in the tree.

●  At each step,
○ Find node with smallest estimated cost.
○ Add to tree 𝑇 by including edge with estimated “predecessor”.
○ Update cost of neighbors.

●  Same  as adding lightest edge from 𝑇 to outside 𝑇 at every step!
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Prim’s Algorithm, Equivalently

●  While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest 
cost.

○ add the edge between 𝑢 and its 
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of 
𝑢’s neighbors which are not 
already in the tree.
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Recall: Priority Queues

● How do we efficiently find node with smallest cost?

● Priority Queues:
○ PriorityQueue(priorities): creates priority queue from 

dictionary whose values are priorities.

○ .extract_min(): removes and returns key with smallest value.

○ .decrease_priority(key, value): changes key’s value.

● We’ll use a priority queue to hold nodes not yet added to tree.
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def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree u v
  5 9
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Prim and Dijkstra

● This is a lot like Dijkstra’s Algorithm for s.p.d.!

● Both: at each step, extract node with smallest cost, update

its edges. (Prim: only those edges to nodes not in tree).

●  Dijkstra update of (𝑢, 𝑣):
cost[v] = min(cost[v], cost[u] + weight(u, v))

●  Prim update of (𝑢, 𝑣):
cost[v] = min(cost[v], weight(u, v))
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Dijkstra is similar to?
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Time Complexity
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Time Complexity

● A priority queue can be implemented using a heap.

● If a binary min-heap is used:

○ PriorityQueue(est) takes Θ(𝑉 ) time.

○ .extract_min() takes 𝑂(log 𝑉 ) time.

○ .decrease_priority() takes 𝑂(log 𝑉 ) time.



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

log V to 
run once



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

log V to 
run once

O(V + V log V + E log V)



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

log V to 
run once

O(V log V + E log V)



❖

Time Complexity

● Using a binary heap...

● Overall: Θ(𝑉 log 𝑉 + 𝐸 log 𝑉 ).

● Since graph is assumed connected, 𝐸 = Ω(𝑉 ).

○ E ≥ V−1

● So this simplifies to Θ(𝐸 log 𝑉 ).



❖

Fibonacci Heaps

● A priority queue can be implemented using a heap.
● If a Fibonacci min-heap is used:

○ PriorityQueue(est) takes Θ(𝑉 ) time.

○ .extract_min() takes Θ(log 𝑉 ) time.

■ amortized

○ .decrease_priority() takes 𝑂(1) time.



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

constant to 
run once



❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

constant to 
run once

O(V log V + E)



❖

Time Complexity

●  Using a Fibonacci heap...
●  Overall: Θ(𝑉 log 𝑉 + 𝐸).



❖

Fibonacci vs. Binary Heaps

● Using Fibonacci heaps improves time complexity when graph is dense.

● E.g., if 𝐸 = Θ(𝑉2):

○ Prim’s with Fibonacci: Θ(𝐸) = Θ(𝑉2)
○  Prim’s with binary heap: Θ(𝐸 log 𝐸) = Θ(𝑉 2 log 𝑉 ). -slower

●  But Fibonacci heaps are hard to implement; have large constants.

●  Binary heaps used more in practice despite complexity.



❖

Correctness of Prim’s 
Algorithm



❖

Being Greedy

●  At every step, we add the lightest edge.
●  Is this “safe”?
●  Yes! This is guaranteed to find an MST.



❖

Promising Subtrees
●  Let 𝐺 = (𝑉 , 𝐸, 𝜔) be a weighted graph.

● A subgraph 𝑇′ = (𝑉′, 𝐸′) is promising if it 
is “part” of some MST.
○ That is, it is an “MST in progress”
○ Not necessarily a tree!

● That is, there exists an MST 𝑇 = (𝑉 , 𝐸mst)
such that 𝐸′ ⊂ 𝐸mst.

● Hint: a “promising subtree” where 𝑉 ′ = 𝑉 
is an MST!



❖

Main idea

Prim’s starts with a promising subtree 𝑇. At each step, adds 
lightest edge from a node within 𝑇 to a node outside of 𝑇.

We’ll show each new edge results in a larger promising sub-tree. 
Eventually the promising subtree becomes a full MST.



❖

Claim

●  Let 𝐺 = (𝑉 , 𝐸, 𝜔) be a weighted graph.

● Suppose 𝑇′ = (𝑉′, 𝐸′) is a promising
subtree for an MST of 𝐺.

● Let 𝑒 = (𝑢, 𝑣) be a lightest edge from a
node in 𝑇′ to a node outside of 𝑇′ (Prim).

● Then adding (𝑢, 𝑣) to 𝑇′ results in another 
promising subtree.



❖

Proof ● Suppose 𝑇mst is an MST that includes 𝑇′

● If 𝑇mst includes 𝑒, we’re done: 𝑇′ + 𝑒 is
promising.

● If it doesn’t include 𝑒, it must have an

edge 𝑓 that connects 𝑇′ to rest of the graph.

● Swap 𝑓 with 𝑒 in 𝑇mst. The result is a

tree, and it must be a MST since 𝜔(𝑒) ≤ 𝜔(𝑓).

● So there is an MST that contains 𝑇′ + 𝑒.



❖

Do you have any questions?

Thank you!

CampusWire!


