lllllllllllllllllllll==l=

DSC 40B e
Lecture 26 : Minimum -
Spanning Trees. Prim’s

algorithm g
o :

T ———
-ttt

’
C
C

"

93322290

Minimum Spanning Trees
-ttt

==llllllllllllllllllllllll=l=
.-

=I..) Dream World

—

Choose a set of roads so that:

- 200 100 e Every building must get
=0 OO coffee.

mli= PC e No loops

1

Center (00 e Total cost is minimized.
Hall Hj=

—70
1000 \ Sequoyah
— Hall
0 600
alin O]
T 300

Mosaic
——___ Pacific
Hall
400

T ————
e

==llllllllllllllllllllllll=l=
.-

=I..) Dream World

—

Choose a set of roads so that:

- 200 100 e Every building must get
=0 OO coffee.

mli= PC e No loops

1

Center (00 e Total cost is minimized.
Hall Hj=

700
1000 \ \ Sequoyah One way:

- Hall e 1000 + 700 + 500 + 600=2800

(1] 600 e Not the shortest
Hjin LI
710 300

Mosaic
——___ Pacific
Hall
400

T ————
e

==llllllllllllllllllllllll=l=
.-

=I..) Dream World

—

Choose a set of roads so that:

- 200 (100 e Every building must get coffe
L100] / inE e No IOOPS

= . .
] PC e [otal costis minimized.

1

00
Hall mjin One way:

—
1000 Sequoyoh ® 1000+ 700 + 500 + 600=2800
60

Center

_ Hall ¢ Not the shortest

O
00 / Better path:
(][0 300 e 200+ 300 + 400 + 500=1400

————_ Parcific

Hall
400

L0
1O

Mosaic

T ————
e

==llllllllllllllllllllllll=ll

=I..) Dream World

—

HnN
1O

Center
Hall

1000 \

-

L0
1O

Mosaic

200
/

—

HnN
mjin

PC

L1000

—0
\) }”
mjin 300

————_ Parcific
400

Hall

1

[0
mjin

Sequoyah

Choose a set of roads so that:

e Every building must get coffeg.

e No loops
e TJotal costis minimized.

One way:
e 1000+ 700 + 500 + 600=2800
e Not the shortest

Better path:
e 200+ 300 + 400 + 500=1400

Solution: compute a minimum

spanning tree.

T ————
e

I lllllllllllllllllllllll=l=
.-

.I.-—' Trees

‘@ An undirected graph T = (V, E) is a tree if
o it is connect and
o Itis acyclic

Example: a tree.

. \/\/

IP \
< N

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I.-—' Trees

‘@ An undirected graph T = (V, E) is a tree if
o it is connect and
o Itis acyclic

Example: a tree.

\/
.P O\o/7 O/\ /
I-’ !
= -

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

.I.-—' Trees

‘@ An undirected graph T = (V, E) is a tree if

o itis connect and
o It is acyclic Example: not a tree.

@)
IP O//E/ O\Q/O
< =S

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I.-—' Trees

‘@ An undirected graph T = (V, E) is a tree if

o itis connect and
o Itis acyclic Example: not a tree.

.P O\O/O
< =8

B ————T
e

==llllllllllllllllllllllll=ll

.I'-’ Trees: Equivalent Definition

- e Anundirected graph T = (V, E) is a tree if
o it is connected; and
o |El=1V]-1.

.P O\ \/\/
= S
= E

B ————T
.............................

Example: a tree.

==llllllllllllllllllllllll=ll

.I'-’ Trees: Equivalent Definition

- e Anundirected graph T = (V, E) is a tree if
o it is connected; and
o |El=1V]-1.

\/
.P O\o/7 O/\ /
I-’ !
= -

B ————T
.............................

Example: a tree.

==llllllllllllllllllllllll=ll

.I'-’ Trees: Equivalent Definition

- e Anundirected graph T = (V, E) is a tree if
o it is connected; and

Example: not a tree.
o |El=V]-1. P

@)
IP O//é/ O\Q/O
< =S

B ————T
e

=lllllllllllllllllllllllll=l=
.-

Trees: Equivalent Definition

- e Anundirected graph T = (V, E) is a tree if
o it is connected; and

Example: not a tree.
o |E|l=1|V]-1.

O ©
\ /
O

= T —— T ———

'l' '!.'f"f'!"!."!"

Tree Properties

e There is a unique simple path
between any two nodes in 3
tree.

creates a cycle (no longer a

/ \ / Adding a new edge to a tree
/ tree).

7

O

1
O
| o

o Removing an edge from a tree
O disconnects it (no longer a tree).

11113999

T ————
.............................

Tree Properties
| e There is a3 unique simple path

between any two nodes in a
tree.

Adding a new edge to a tree
creates a cycle (no longer a
tree).

O—_
@

Removing an edge from a tree
disconnects it (no longer a tree).

133193149

T ————
.............................

Tree Properties

e There is a unique simple path
between any two nodes in 3
tree.

\ # \ / e Adding a new edge to a tree
O creates a cycle (no longer a

O
// ~ tree).
C\\G Removing an edge from a tree
I O disconnects it (no longer a tree).

B ————T
.............................

O

199999949

Tree Properties

e There is a8 unique simple path
between any two nodes in a
tree.

\ O O Adding a new edge to a tree
O \ / creates a cycle (no longer a
/ tree).
/ O / Removing an edge from a tree
disconnects it (no longer a
O O tree).

O

11113999

T ————
.............................

!llllllllllllllllllllll=l=
.-

Spanning Trees

e Let G =(V, E)be a connected graph. A spanning tree of
Gisatree T = (V, E) with the same nodes as G, and 3
subset of G's edges.

"l'f‘l"!"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Spanning Trees

e Let G =(V, E)be a connected graph. A spanning tree of
Gisatree T = (V, E) with the same nodes as G, and 3
subset of G's edges.

"l'f‘l"!"f'!"!."!'

T ————
.............................

.I..) The same graph can have many spanning

té@

EIF, mnd I

IIllllllllllllllllllllllll=ll

.I..) The same graph can have many spanning

té@

EIF, mnd I

==llllllllllllllllllllllll=ll

=I..) Spanning Tree Cost
0
0

If G = (V, E, w) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

=I..) Spanning Tree Cost
0
0

If G = (V, E,) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

.I
5
=I.-—' Cost: 10+11+1+7+3+8+10—50
o

B ————T
e

==llllllllllllllllllllllll=ll

=I..) Spanning Tree Cost
0
0

If G = (V, E,) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

.I
5
=I.-—' Cost: 2+10+5+1+4+9+8 39
o

B ————T
e

==llllllllllllllllllllllll=l=
.-

N O O
=I._, Minimum Spanning Tree

The minimum spanning tree problem is as follows:

o Given: A weighted, undirected graph G = (V, E, w).

o Compute: a3 spanning tree of G with minimum cost
(i.e., minimum total edge weight).

For a given graph, the MST may not be unique.

Cost:
1+2+3+4+5+7+8=30

e ————
e

I lllllllllllllllllllllll=ll

L
II.__, .
Question

Suppose the edges of a graph G = (V, ¢, w) all have the same
weight. How can we compute an MST of the graph?

o
< =8

B ————T
e

MSTs in Data Science?

e Do we need to find MSTs in data science?
e Actually, yes! (Next lecture)

11113999

T ————
.............................

T ———
..............................

Building MSTs

e How do we build a MST efficiently?

e We’ll adopt a greedy approach.
o Build a tree edge-by-edge.
o At every step, doing what looks best at the moment.

e This strateqgy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.

Seasaay

T ————
e

Two Greedy Approaches

e We’'ll look at two greedy algorithms:
o Today: Prim’s Algorithm
o Next time: Kruskal’'s Algorithm

e Differ in the order in which edges are added to tree.

e Also differ in time complexity.

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.
9 —0O
| e While T is not a spanning tree,
\ / greedily add lightest edge from a
node in T to a node not in T.

o ‘“Lightest” = edge with the
smallest weight.

O
O/s

m// <

O

1- rrrrer

T ————
...........................

==llllllllllllllllllllllll=ll

.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.
9 —0O
| e While T is not a spanning tree,
\ / greedily add lightest edge from a
node in T to a node not in T.

o ‘“Lightest” = edge with the
smallest weight.

O
O/s

m// <

1- rrrrer

T ————
...........................

==llllllllllllllllllllllll=ll

.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to

: '«? “tree”, T.
\ \ e While T is not a spanning tree,

greedily add lightest edge from a
node in Tto a node not in 7.
2 o “Lightest” = edge with the
smallest weight.

O
O/s

m// <Y

1- rrrrer

T ————
...........................

==llllllllllllllllllllllll=ll

.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to

: '«? “tree”, T.
\ \ e While T is not a spanning tree,

greedily add lightest edge from a
node in Tto a node not in 7.
2 o “Lightest” = edge with the
smallest weight.

O
O/s

m// <Y

1- rrrrer

T ————
...........................

==llllllllllllllllllllllll=ll

=I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to

E'g “tree”, T.
,O—@ S |
O / e While T'is not a spanning tree,
I

O greedily add lightest edge from a
node in 7 to a node not in T.

I
// o ‘“Lightest” = edge with the
10

smallest weight.

= T —— T ———

==llllllllllllllllllllllll=ll

=I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to

‘ “tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

= T —— T ———

==llllllllllllllllllllllll=ll

=I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

T ————
.............................

==llllllllllllllllllllllll=ll

=I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to

/ \9\' . “tree”, T.

e While T is not a spanning tree,
\ / greedily add lightest edge from a

V node in T to a node not in 7.
O / o “Lightest” = edge with the
’ smallest weight.
II" N A
| - O
=- T T ——————
e

==llllllllllllllllllllllll=ll

.I-—' Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

‘\

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

O/s
\\O

O

crrreer
7

T ———
Lttt

==llllllllllllllllllllllll=ll

=I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

R ———
.........................i...

==llllllllllllllllllllllll=ll

.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

/_9‘
@) -

crrreer

T ———
Lttt

==llllllllllllllllllllllll=ll

.I-—' Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

T ———
e

==llllllllllllllllllllllll=ll

=I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

T ————
e

==llllllllllllllllllllllll=ll

.I-—' Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

Is this guaranteed to work? Yes, as
we'll see.

T ————
e

=lllllllllllllllllllllllll=l=
.-

Prim’s Algorithm, Equivalently

e For each node u, store:
o estimated cost of adding node to tree;
o estimated “predecessor” v in the tree.

e At each step,
o Find node with smallest estimated cost.
o Add to tree T by including edge with estimated “predecessor”.
o Update cost of neighbors.

'!."C"C'!‘L"!"

I Same as adding lightest edge from T to outside T at every step!

= T —— T ———

==llllllllllllllllllllllll=ll

.I..—' Prim’s Algorithm, Equivalently

e While T is not a tree:

cost.

V
\ / add the edge between u and its

estimated “predecessor” to T.

o find the node u € T with smallest
\5 o0

5 update estimated cost/pred. of
u's neighbors which are not

// \\ already in the tree.

O

-"l'f'!."t"g'!"!.'

T ————
e

==llllllllllllllllllllllll=ll

.I..—' Prim’s Algorithm, Equivalently

e While T is not a tree:

cost.

V
\ / add the edge between u and its

estimated “predecessor” to T.

o find the node u € T with smallest
\5 o0

5 update estimated cost/pred. of
u's neighbors which are not

// \\ already in the tree.

-"l'f'!."t"g'!"!.'

T ————
e

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

o find the node u ¢ T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not
already in the tree.

T ————
e

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

find the node u € T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

P O update estimated cost/pred. of
= ' u's neighbors which are not
W

p already in the tree.
= i

B ————T
.............................

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

find the node u € T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

P O update estimated cost/pred. of
= ' u's neighbors which are not
W

p already in the tree.
= i

B ————T
.............................

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

cost.

.3 o find the node u € T with smallest

o add the edge between u and its
q estimated “predecessor” to T.

o

o

.P O update estimated cost/pred. of
. u's neighbors which are not
=p N /,1 already in the tree.

=-- T ————
e

==llllllllllllllllllllllll=ll

O
.I,_) Prim'’s Algorithm, Equivalently -

e While T is not a tree:

O w
y T~~~ 6 Ee > o find the node u & T with smallest

\6 y * cost.

1% |

\4 /O \ A add the edge between u and its
10

O ’/15 5 update estimated cost/pred. of
5

o
o
o
=
u's neighbors which are not
. N /,4 5 q already in the tree.
-
3

I O estimated “predecessor” to T.
b

T ————
Lttt

==llllllllllllllllllllllll=ll

O
.I,_) Prim'’s Algorithm, Equivalently -

e While T is not a tree:

O w
y T~~~ 6 Ee > o find the node u & T with smallest

\ﬁy \9 A* cost.

O add the edge between u and its
I
10

Y
b
/ ’/1 5 update estimated cost/pred. of

o

o

o

Y 4

. 15 u's neighbors which are not
= N /n? 5 3 already in the tree.

3

I O estimated “predecessor” to T.

T ————
Lttt

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

find the node u € T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not

B

B

B

B

L |

. already in the tree.
b O

3

T ————
Lttt

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

find the node u € T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not

B

B

B

B

L |

. already in the tree.
b O

3

T ————
Lttt

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

find the node u € T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not

B

B

B

B

L |

. already in the tree.
b O

3

T ————
Lttt

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

O e While Tis not a tree:
\] find the node u ¢ T with smallest
\6 cost.
\ o add the edge between u and its
q estimated “predecessor” to T.
b
P O ’ o update estimated cost/pred. of
. u's neighbors which are not
.p \ \ already in the tree.
=i-'. 17

T ————
e

==llllllllllllllllllllllll=ll

=I.-—' Prim’s Algorithm, Equivalently

O e While Tis not a tree:
\ / find the node u & T with smallest
cost.
o add the edge between u and its
q estimated “predecessor” to T.
.I O u's neighbors which are not
.p \ \‘ already in the tree.
7

=i,,. --1--------- I

update estimated cost/pred. of

==llllllllllllllllllllllll=ll

=I.-—' Prim’s Algorithm, Equivalently

e While Tis not a tree:
find the node u ¢ T with smallest
cost.
o add the edge between u and its
q estimated “predecessor” to T.
.I O u's neighbors which are not
.p \ \ already in the tree.
7

=i~. --1--------- I

update estimated cost/pred. of

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

o find the node u ¢ T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not
already in the tree.

---------—-----d..
e

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

o find the node u ¢ T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not
already in the tree.

---------—-----d..
e

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

i e While T is not a tree:
find the node u € T with smallest

. cost.
add the edge between u and its
\ estimated “predecessor” to T.

El.:

update estimated cost/pred. of
u's neighbors which are not

O \
N + 5 already in the tree.
O \d

--------——-----d
e

==llllllllllllllllllllllll=ll

=I.-—' Prim'’s Algorithm, Equivalently

e While T is not a tree:

o find the node u ¢ T with smallest
cost.

add the edge between u and its
estimated “predecessor” to T.

update estimated cost/pred. of
u's neighbors which are not
already in the tree.

---------—-----d..
e

==llllllllllllllllllllllll=ll

.I.__.
= Recall: Priority Queues

= e How do we efficiently find node with smallest cost?

. e Priority Queues:
. o PriorityQueue(priorities): creates priority queue from
. dictionary whose values are priorities.

I o .extract_min(): removes and returns key with smallest value.

o .decrease_priority(key, value): changes key’s value.

B ————T
.............................

e We'll use a priority queue to hold nodes not yet added to tree.

”
c
-
O

!!lllllllllllllllllllll=ll

def prim(graph, weight):
tree = UndirectedGraph()

~estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
P return tree M
= T T ——————
.............................

e

llllllllllIIIIIIIIIIIIIIIIIIII
|
" primandopkstro -
o o
. ~ e This is a lot like Dijkstra’s Algorithm for s.p.d.! .
= e Both: at each step, extract node with smallest cost, update =
. its edges. (Prim: only those edges to nodes not in tree). .
. e Dijkstra update of (u, v): .
.P cost[v] = min(cost[v], cost[u] + weight(u, v)) .
. e Prim update of (u, v): .
=pI cost[v] = min(cost[v], weight(u, Vv)) E
=- T R —————
-ttt

B

l Djjkstra is similar to?
l

. def dijkstra(graph, weights, source):
B
B
B

est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

priority_queue = PriorityQueue(est)
while priority_queue:
u = priority_queue.extract_min()

. for v in graph.neighbors(u):
. changed = update(u, v, weights, est, pred)
. if changed:
priority_queue.change_priority(v, est[v])
= return est, pred

B ————T
.............................

T ———
..............................

Time Complexity

e A priority queue can be implemented using a heap.
e |f 3 binary min-heap is used:

o PriorityQueue(est) takes O(V) time.

o .extract_min() takes O(log V) time.

o .decrease_priority() takes O(log V') time.

11113999

T ————
.............................

”
c
-
O

!!lllllllllllllllllllll=ll

[N N N N v v e v .
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree

B ————T
.............................

e

”
c
-
O

!!lllllllllllllllllllll=ll

[N N N N v v e v .
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost)

while priority_queue: V times
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree

B ————T
.............................

e

”
c
-
O

!!lllllllllllllllllllll=ll

[N N N N v v e v .
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost)

while priority_queue: V times
u = priority_queue.extract_min()| Jog V times to run once
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree

B ————T
.............................

e

A v v
e |

./ /| | | | |
def prim(graph, weight): |-..

tree = UndirectedGraph() O(V)

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

'!."C"C'!'C'l'

priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree .

e

Illlllllllllllllllllllllll====

.'--- ./ /| | | | |
def prim(graph, weight): L
- | (V) Ul

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
~cost = {node: float('inf') for node in graph.nodes}

priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-

for v in graph.neighbors(u):
E times if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))

logV to /

o

-
run once cost[v] = weight(u, v)

o

o

estimated_predecessor[v] = u
= return tree

T ———
..............................

Illlllllllllllllllllllllll====

.'--- ./ /| | | | |
def prim(graph, weight): L
- | (V) Ul

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
~cost = {node: float('inf') for node in graph.nodes}

priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

log V to / priority_queue.decrease_priority(v, weight(u, v))
run once cost[v] = weight(u, v)

P estimated_predecessor[v] = u O(V + Vlog V + E log V)

return tree .

Illlllllllllllllllllllllll====

.'--- ./ /| | | | |
def prim(graph, weight): L
- | (V) Ul

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
~cost = {node: float('inf') for node in graph.nodes}

priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

log V to / priority_queue.decrease_priority(v, weight(u, v))
run once cost[v] = weight(u, v)

= estimated_predecessor[v] = u O(V log V + E log V)

return tree .

==llllllllllllllllllllllll=ll

II.__.
= Time Complexity

e Using a binary heap...
e Overall: ©(VlogV + Elog V).

Since graph is assumed connected, £ = Q(V).
o EzV-1

.P So this simplifies to ©(E log V).
= =

B ————T
.............................

i
B Fibonacci Heaps

~ e A priority queue can be implemented using a heap.
e |f a3 Fibonacci min-heap is used:

o PriorityQueue(est) takes ©O(V) time.

o .extract_min() takes O(log V) time.

. m amortized
I o .decrease_priority() takes O(1) time.

=I~—'

B W ————T
e

HEE ..
B

A v v
e |

./ /| | | | |
def prim(graph, weight): |-..

tree = UndirectedGraph() O(V)

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-

for v in graph.neighbors(u):
E times if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))

'!."C"C'!'C'l'

constant to /

o

-
run once cost[v] = weight(u, v)

o

o

estimated_predecessor[v] = u
= return tree

T ———
..............................

e

A v v
e |

./ /| | | | |
def prim(graph, weight): |-..

tree = UndirectedGraph() O(V)

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

'!."C'C'C'C'!'.'

constant tO/‘ priority_queue.decrease_priority(v, weight(u, v))
run once cost[v] = weight(u, v)

estimated_predecessor[v] = u O(V log V + E)
= return tree .

e

ceeeccce

!llllllllllllllllllllll=l=
.-

Time Complexity

e Using a Fibonacci heap...
e Overall: ©(Vlog V + E).

T ————
.........................i...

!!llllllllllllllllllll=ll

Fibonacci vs. Binary Heaps

e Using Fibonacci heaps improves time complexity when graph is dense.
e E.qg.,if E=0(V?):

o Prim’s with Fibonacci: O(E) = ©(V?)
o Prim’s with binary heap: ©(E log E) = ©(V 2 log V). -slower

But Fibonacci heaps are hard to implement; have large constants.

e Binary heaps used more in practice despite complexity.

K.
c
"

EI.) L

B ————T
e

93322290

Correctness of Prim’s
Algorithm
-t rrrrrrrtrrrrtrtrrrrrrrrrrrl

==llllllllllllllllllllllll=l=
.-

=
=I"'. Being Greedy

e At every step, we add the lightest edge.
e Is this “safe”?
e Yes! This is guaranteed to find an MST.

o
< =8

B ————T
e

Promising Subtrees
o lLetG=(V,E, w)beaweighted graph.

e Asubgraph T' = (V', E') is promising if it
is “part” of some MST.
o Thatis, itis an “MST in progress”
o Not necessarily a tree!

e Thatis, there existsan MST T =(V , E

such that E' C E_ .

e Hint: a “promising subtree” where V'=V
is an MST!

mst)

11113999

T ————
.............................

Main idea

Prim’s starts with a promising subtree 7. At each step, adds
lightest edge from a node within T'to a node outside of T.

We'll show each new edge results in a larger promising sub-tree.
Eventually the promising subtree becomes a full MST.

11113999

T ————
.............................

ceeecece

Let G = (V, E, w) be a weighted graph.

Suppose T" = (V', E') is a promising
subtree for an MST of G.

Let e = (u, v) be a lightest edge from a
node in T" to a node outside of 7" (Prim).

Then adding (u, v) to T results in another
promising subtree.

T ————
.............................

ceeecece

e Suppose T isan MST thatincludes T’

If T includes e, we're done: T" + e is

promising.

If it doesn’t include e, it must have an

edge fthat connects T" to rest of the graph.

Swap fwithein T __. The resultis a

tree, and it must be a MST since w(e) < w(f).

So there is an MST that contains 7" + e.

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

