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Choose a set of roads so that:
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1

00
Hall mjin One way:

—
1000 Sequoyoh  ® 1000+ 700 + 500 + 600=2800
60

Center

_ Hall ¢ Not the shortest

O
00 / Better path:
(][0 300 e 200+ 300 + 400 + 500=1400

————_ Parcific

Hall
400

L0
1O

Mosaic

T ————
e



==llllllllllllllllllllllll=ll

=I..) Dream World

—
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Choose a set of roads so that:

e Every building must get coffeg.

e No loops
e TJotal costis minimized.

One way:
e 1000+ 700 + 500 + 600=2800
e Not the shortest

Better path:
e 200+ 300 + 400 + 500=1400

Solution: compute a minimum

spanning tree.
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.I.-—' Trees

‘@ An undirected graph T = (V, E) is a tree if
o it is connect and
o Itis acyclic

Example: a tree.
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‘@ An undirected graph T = (V, E) is a tree if
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.I'-’ Trees: Equivalent Definition

- e Anundirected graph T = (V, E) is a tree if
o it is connected; and
o |El=1V]-1.

.P O\ \/\/
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Example: a tree.
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Trees: Equivalent Definition

- e Anundirected graph T = (V, E) is a tree if
o it is connected; and

Example: not a tree.
o |E|l=1|V]-1.
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Tree Properties

e There is a unique simple path
between any two nodes in 3
tree.

creates a cycle (no longer a

/ \ / Adding a new edge to a tree
/ tree).

7

O

1
O
| o

o Removing an edge from a tree
O disconnects it (no longer a tree).
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Tree Properties
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Spanning Trees

e Let G =(V, E)be a connected graph. A spanning tree of
Gisatree T = (V, E ) with the same nodes as G, and 3
subset of G's edges.
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.I..) The same graph can have many spanning
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=I..) Spanning Tree Cost
0
0

If G = (V, E, w) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

o
< =8
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=I..) Spanning Tree Cost
0
0

If G = (V, E, ) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.
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=I._, Minimum Spanning Tree

The minimum spanning tree problem is as follows:

o Given: A weighted, undirected graph G = (V, E, w).

o Compute: a3 spanning tree of G with minimum cost
(i.e., minimum total edge weight).

For a given graph, the MST may not be unique.

Cost:
1+2+3+4+5+7+8=30

e ————
e
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Question

Suppose the edges of a graph G = (V, ¢, w) all have the same
weight. How can we compute an MST of the graph?

o
< =8

B ————T
e




MSTs in Data Science?

e Do we need to find MSTs in data science?
e Actually, yes! (Next lecture)

11113999
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Building MSTs

e How do we build a MST efficiently?

e We’ll adopt a greedy approach.
o Build a tree edge-by-edge.
o At every step, doing what looks best at the moment.

e This strateqgy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.

Seasaay

T ————
e



Two Greedy Approaches

e We’'ll look at two greedy algorithms:
o Today: Prim’s Algorithm
o Next time: Kruskal’'s Algorithm

e Differ in the order in which edges are added to tree.

e Also differ in time complexity.

11113999
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.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.
9 —0O
| e While T is not a spanning tree,
\ / greedily add lightest edge from a
node in T to a node not in T.

o ‘“Lightest” = edge with the
smallest weight.

O
O/s

m// <

O

1- rrrrer

T ————
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.I-—' Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

Is this guaranteed to work? Yes, as
we'll see.
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Prim’s Algorithm, Equivalently

e For each node u, store:
o estimated cost of adding node to tree;
o estimated “predecessor” v in the tree.

e At each step,
o Find node with smallest estimated cost.
o Add to tree T by including edge with estimated “predecessor”.
o Update cost of neighbors.

'!."C"C'!‘L"!"

I Same as adding lightest edge from T to outside T at every step!

= T —— T ———
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.I..—' Prim’s Algorithm, Equivalently

e While T is not a tree:

cost.

V
\ / add the edge between u and its

estimated “predecessor” to T.

o find the node u € T with smallest
\5 o0

5 update estimated cost/pred. of
u's neighbors which are not

// \\ already in the tree.

O
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=I.-—' Prim'’s Algorithm, Equivalently
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cost.
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=I.-—' Prim'’s Algorithm, Equivalently
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= Recall: Priority Queues

= e How do we efficiently find node with smallest cost?

. e Priority Queues:
. o PriorityQueue(priorities): creates priority queue from
. dictionary whose values are priorities.

I o .extract_min(): removes and returns key with smallest value.

o .decrease_priority(key, value): changes key’s value.

B ————T
.............................

e We'll use a priority queue to hold nodes not yet added to tree.
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def prim(graph, weight):
tree = UndirectedGraph()

~estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
P return tree M
= T T ——————
.............................

e
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" primandopkstro -
o o
. ~ e This is a lot like Dijkstra’s Algorithm for s.p.d.! .
= e Both: at each step, extract node with smallest cost, update =
. its edges. (Prim: only those edges to nodes not in tree). .
. e Dijkstra update of (u, v): .
.P cost[v] = min(cost[v], cost[u] + weight(u, v)) .
. e Prim update of (u, v): .
=pI cost[v] = min(cost[v], weight(u, Vv)) E
=- T R —————
-ttt



B

l Djjkstra is similar to?
l

. def dijkstra(graph, weights, source):
B
B
B

est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

priority_queue = PriorityQueue(est)
while priority_queue:
u = priority_queue.extract_min()

. for v in graph.neighbors(u):
. changed = update(u, v, weights, est, pred)
. if changed:
priority_queue.change_priority(v, est[v])
= return est, pred

B ————T
.............................
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Time Complexity

e A priority queue can be implemented using a heap.
e |f 3 binary min-heap is used:

o PriorityQueue(est) takes O(V) time.

o .extract_min() takes O(log V) time.

o .decrease_priority() takes O(log V') time.
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[N N N N v v e v .
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree
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[N N N N v v e v .
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost)

while priority_queue: V times
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree
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[N N N N v v e v .
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost)

while priority_queue: V times
u = priority_queue.extract_min()| Jog V times to run once
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree

B ————T
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def prim(graph, weight): |-..

tree = UndirectedGraph() O(V)

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

'!."C"C'!'C'l'

priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)

estimated_predecessor[v] = u
= return tree .

e
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def prim(graph, weight): L
- | (V) Ul

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
~cost = {node: float('inf') for node in graph.nodes}

priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-

for v in graph.neighbors(u):
E times if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))

logV to /

o

-
run once cost[v] = weight(u, v)

o

o

estimated_predecessor[v] = u
= return tree

T ———
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def prim(graph, weight): L
- | (V) Ul

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
~cost = {node: float('inf') for node in graph.nodes}

priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

log V to / priority_queue.decrease_priority(v, weight(u, v))
run once cost[v] = weight(u, v)

P estimated_predecessor[v] = u O(V + Vlog V + E log V)

return tree .
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def prim(graph, weight): L
- | (V) Ul

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
~cost = {node: float('inf') for node in graph.nodes}

priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

log V to / priority_queue.decrease_priority(v, weight(u, v))
run once cost[v] = weight(u, v)

= estimated_predecessor[v] = u O(V log V + E log V)

return tree .
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II.__.
= Time Complexity

e Using a binary heap...
e Overall: ©(VlogV + Elog V).

Since graph is assumed connected, £ = Q(V ).
o EzV-1

.P So this simplifies to ©(E log V).
= =
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B Fibonacci Heaps

~ e A priority queue can be implemented using a heap.
e |f a3 Fibonacci min-heap is used:

o PriorityQueue(est) takes ©O(V ) time.

o .extract_min() takes O(log V) time.

. m amortized
I o .decrease_priority() takes O(1) time.

=I~—'
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def prim(graph, weight): |-..

tree = UndirectedGraph() O(V)

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-

for v in graph.neighbors(u):
E times if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))

'!."C"C'!'C'l'

constant to /

o

-
run once cost[v] = weight(u, v)

o

o

estimated_predecessor[v] = u
= return tree
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def prim(graph, weight): |-..

tree = UndirectedGraph() O(V)

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
~priority_queue = PriorityQueue(cost) .

while priority_queue: V times .
u = priority_queue.extract_min()| log V times to run once
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u) .-
for v in graph.neighbors(u):

Etimes |if weight(u, v) < cost[v] and v not in tree.nodes: ..

'!."C'C'C'C'!'.'

constant tO/‘ priority_queue.decrease_priority(v, weight(u, v))
run once cost[v] = weight(u, v)

estimated_predecessor[v] = u O(V log V + E)
= return tree .

e
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Time Complexity

e Using a Fibonacci heap...
e Overall: ©(Vlog V + E).

T ————
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Fibonacci vs. Binary Heaps

e Using Fibonacci heaps improves time complexity when graph is dense.
e E.qg.,if E=0(V?):

o Prim’s with Fibonacci: O(E) = ©(V?)
o Prim’s with binary heap: ©(E log E) = ©(V 2 log V). -slower

But Fibonacci heaps are hard to implement; have large constants.

e Binary heaps used more in practice despite complexity.
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Correctness of Prim’s
Algorithm
-t rrrrrrrtrrrrtrtrrrrrrrrrrrl



==llllllllllllllllllllllll=l=
.-

=
=I"'. Being Greedy

e At every step, we add the lightest edge.
e Is this “safe”?
e Yes! This is guaranteed to find an MST.

o
< =8
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Promising Subtrees
o lLetG=(V,E, w)beaweighted graph.

e Asubgraph T' = (V', E') is promising if it
is “part” of some MST.
o Thatis, itis an “MST in progress”
o Not necessarily a tree!

e Thatis, there existsan MST T =(V , E

such that E' C E_ .

e Hint: a “promising subtree” where V'=V
is an MST!

mst)

11113999
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Main idea

Prim’s starts with a promising subtree 7. At each step, adds
lightest edge from a node within T'to a node outside of T.

We'll show each new edge results in a larger promising sub-tree.
Eventually the promising subtree becomes a full MST.

11113999

T ————
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Let G = (V, E, w) be a weighted graph.

Suppose T" = (V', E') is a promising
subtree for an MST of G.

Let e = (u, v) be a lightest edge from a
node in T" to a node outside of 7" (Prim).

Then adding (u, v) to T results in another
promising subtree.

T ————
.............................
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e Suppose T isan MST thatincludes T’

If T includes e, we're done: T" + e is

promising.

If it doesn’t include e, it must have an

edge fthat connects T" to rest of the graph.

Swap fwithein T __. The resultis a

tree, and it must be a MST since w(e) < w(f).

So there is an MST that contains 7" + e.

T ————
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Thank you!
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