
❖

DSC 40B
Lecture 26 : Minimum
Spanning Trees. Prim’s

algorithm

❖

Minimum Spanning Trees

❖

Dream World

Center
Hall

PC

Sequoyah
Hall

Pacific
Hall

Mosaic

200

700

600

500

300

400

1000

Choose a set of roads so that:

● Every building must get
coffee.

● No loops
● Total cost is minimized.

❖

Dream World

Center
Hall

PC

Sequoyah
Hall

Pacific
Hall

Mosaic

200

700

600

500

300

400

1000

Choose a set of roads so that:

● Every building must get
coffee.

● No loops
● Total cost is minimized.

One way:
● 1000 + 700 + 500 + 600=2800
● Not the shortest

❖

Dream World

Center
Hall

PC

Sequoyah
Hall

Pacific
Hall

Mosaic

200

700

600

500

300

400

1000

Choose a set of roads so that:

● Every building must get coffee.
● No loops
● Total cost is minimized.

One way:
● 1000 + 700 + 500 + 600=2800
● Not the shortest

Better path:
● 200 + 300 + 400 + 500=1400

❖

Dream World

Center
Hall

PC

Sequoyah
Hall

Pacific
Hall

Mosaic

200

700

600

500

300

400

1000

Choose a set of roads so that:

● Every building must get coffee.
● No loops
● Total cost is minimized.

One way:
● 1000 + 700 + 500 + 600=2800
● Not the shortest

Better path:
● 200 + 300 + 400 + 500=1400

Solution: compute a minimum
spanning tree.

❖

Trees

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connect and
○ It is acyclic

❖

Trees

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connect and
○ It is acyclic

❖

Trees

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connect and
○ It is acyclic

❖

Trees

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connect and
○ It is acyclic

❖

Trees: Equivalent Definition

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connected; and
○ |𝐸| = |𝑉 | − 1.

❖

Trees: Equivalent Definition

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connected; and
○ |𝐸| = |𝑉 | − 1.

❖

Trees: Equivalent Definition

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connected; and
○ |𝐸| = |𝑉 | − 1.

❖

Trees: Equivalent Definition

● An undirected graph 𝑇 = (𝑉 , 𝐸) is a tree if
○ it is connected; and
○ |𝐸| = |𝑉 | − 1.

❖

Tree Properties
● There is a unique simple path

between any two nodes in a
tree.

● Adding a new edge to a tree
creates a cycle (no longer a
tree).

● Removing an edge from a tree
disconnects it (no longer a tree).

❖

Tree Properties
● There is a unique simple path

between any two nodes in a
tree.

● Adding a new edge to a tree
creates a cycle (no longer a
tree).

● Removing an edge from a tree
disconnects it (no longer a tree).

❖

Tree Properties
● There is a unique simple path

between any two nodes in a
tree.

● Adding a new edge to a tree
creates a cycle (no longer a
tree).

● Removing an edge from a tree
disconnects it (no longer a tree).

❖

Tree Properties
● There is a unique simple path

between any two nodes in a
tree.

● Adding a new edge to a tree
creates a cycle (no longer a
tree).

● Removing an edge from a tree
disconnects it (no longer a
tree).

❖

Spanning Trees

● Let 𝐺 = (𝑉 , 𝐸) be a connected graph. A spanning tree of
𝐺 is a tree 𝑇 = (𝑉 , 𝐸𝑇) with the same nodes as 𝐺, and a
subset of 𝐺′𝑠 edges.

❖

Spanning Trees

● Let 𝐺 = (𝑉 , 𝐸) be a connected graph. A spanning tree of
𝐺 is a tree 𝑇 = (𝑉 , 𝐸𝑇) with the same nodes as 𝐺, and a
subset of 𝐺′𝑠 edges.

❖

The same graph can have many spanning
trees.

❖

The same graph can have many spanning
trees.

❖

Spanning Tree Cost

If 𝐺 = (𝑉 , 𝐸, 𝜔) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

 2

5

7

10

4

8

103
9

1

11

❖

Spanning Tree Cost

If 𝐺 = (𝑉 , 𝐸, 𝜔) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

 2

5

7

10

4

8

103
9

1

Cost: 10 + 11 + 1 + 7 + 3 + 8 + 10 = 50

11

❖

Spanning Tree Cost

If 𝐺 = (𝑉 , 𝐸, 𝜔) is a weighted undirected graph, the cost (or weight) of
a spanning tree is the total weight of the edges in the spanning tree.

 2

5

7

10

4

8

103
9

1

Cost: 2 + 10 + 5 + 1 + 4 + 9 + 8 = 39

11

❖

Minimum Spanning Tree
● The minimum spanning tree problem is as follows:

○ Given: A weighted, undirected graph 𝐺 = (𝑉 , 𝐸, 𝜔).
○ Compute: a spanning tree of 𝐺 with minimum cost

(i.e., minimum total edge weight).

● For a given graph, the MST may not be unique.

 2

5

7

10

4

8

103
9

1

11
Cost:
1+2+3+4+5+7+8=30

❖

Question
Suppose the edges of a graph 𝐺 = (𝑉 , 𝑒, 𝜔) all have the same
weight. How can we compute an MST of the graph?

❖

MSTs in Data Science?

● Do we need to find MSTs in data science?
● Actually, yes! (Next lecture)

❖

Prim’s Algorithm

❖

Building MSTs

● How do we build a MST efficiently?

● We’ll adopt a greedy approach.
○ Build a tree edge-by-edge.
○ At every step, doing what looks best at the moment.

● This strategy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.

❖

Two Greedy Approaches

● We’ll look at two greedy algorithms:
○ Today: Prim’s Algorithm
○ Next time: Kruskal’s Algorithm

● Differ in the order in which edges are added to tree.

● Also differ in time complexity.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

● Is this guaranteed to work? Yes, as
we’ll see.

❖

Prim’s Algorithm, Equivalently

● For each node 𝑢, store:
○ estimated cost of adding node to tree;
○ estimated “predecessor” 𝑣 in the tree.

● At each step,
○ Find node with smallest estimated cost.
○ Add to tree 𝑇 by including edge with estimated “predecessor”.
○ Update cost of neighbors.

● Same as adding lightest edge from 𝑇 to outside 𝑇 at every step!

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

15

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

15

3

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

15

3

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

15

37

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

17

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

17

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

17

2

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

14

37

17

2

12

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

13

37

17

2

12

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

13

37

17

2

12

❖

Prim’s Algorithm, Equivalently

● While 𝑇 is not a tree:

○ find the node 𝑢 ∉ 𝑇 with smallest
cost.

○ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇.

○ update estimated cost/pred. of
𝑢’s neighbors which are not
already in the tree.5

13

37

17

2

12

❖

Recall: Priority Queues

● How do we efficiently find node with smallest cost?

● Priority Queues:
○ PriorityQueue(priorities): creates priority queue from

dictionary whose values are priorities.

○ .extract_min(): removes and returns key with smallest value.

○ .decrease_priority(key, value): changes key’s value.

● We’ll use a priority queue to hold nodes not yet added to tree.

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree u v
 5 9

❖

Prim and Dijkstra

● This is a lot like Dijkstra’s Algorithm for s.p.d.!

● Both: at each step, extract node with smallest cost, update

its edges. (Prim: only those edges to nodes not in tree).

● Dijkstra update of (𝑢, 𝑣):
cost[v] = min(cost[v], cost[u] + weight(u, v))

● Prim update of (𝑢, 𝑣):
cost[v] = min(cost[v], weight(u, v))

❖

Dijkstra is similar to?

❖

Time Complexity

❖

Time Complexity

● A priority queue can be implemented using a heap.

● If a binary min-heap is used:

○ PriorityQueue(est) takes Θ(𝑉) time.

○ .extract_min() takes 𝑂(log 𝑉) time.

○ .decrease_priority() takes 𝑂(log 𝑉) time.

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

log V to
run once

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

log V to
run once

O(V + V log V + E log V)

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

log V to
run once

O(V log V + E log V)

❖

Time Complexity

● Using a binary heap...

● Overall: Θ(𝑉 log 𝑉 + 𝐸 log 𝑉).

● Since graph is assumed connected, 𝐸 = Ω(𝑉).

○ E ≥ V−1

● So this simplifies to Θ(𝐸 log 𝑉).

❖

Fibonacci Heaps

● A priority queue can be implemented using a heap.
● If a Fibonacci min-heap is used:

○ PriorityQueue(est) takes Θ(𝑉) time.

○ .extract_min() takes Θ(log 𝑉) time.

■ amortized

○ .decrease_priority() takes 𝑂(1) time.

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

constant to
run once

❖

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Θ(V)

V times
log V times to run once

E times

constant to
run once

O(V log V + E)

❖

Time Complexity

● Using a Fibonacci heap...
● Overall: Θ(𝑉 log 𝑉 + 𝐸).

❖

Fibonacci vs. Binary Heaps

● Using Fibonacci heaps improves time complexity when graph is dense.

● E.g., if 𝐸 = Θ(𝑉2):

○ Prim’s with Fibonacci: Θ(𝐸) = Θ(𝑉2)
○ Prim’s with binary heap: Θ(𝐸 log 𝐸) = Θ(𝑉 2 log 𝑉). -slower

● But Fibonacci heaps are hard to implement; have large constants.

● Binary heaps used more in practice despite complexity.

❖

Correctness of Prim’s
Algorithm

❖

Being Greedy

● At every step, we add the lightest edge.
● Is this “safe”?
● Yes! This is guaranteed to find an MST.

❖

Promising Subtrees
● Let 𝐺 = (𝑉 , 𝐸, 𝜔) be a weighted graph.

● A subgraph 𝑇′ = (𝑉′, 𝐸′) is promising if it
is “part” of some MST.
○ That is, it is an “MST in progress”
○ Not necessarily a tree!

● That is, there exists an MST 𝑇 = (𝑉 , 𝐸mst)
such that 𝐸′ ⊂ 𝐸mst.

● Hint: a “promising subtree” where 𝑉 ′ = 𝑉
is an MST!

❖

Main idea

Prim’s starts with a promising subtree 𝑇. At each step, adds
lightest edge from a node within 𝑇 to a node outside of 𝑇.

We’ll show each new edge results in a larger promising sub-tree.
Eventually the promising subtree becomes a full MST.

❖

Claim

● Let 𝐺 = (𝑉 , 𝐸, 𝜔) be a weighted graph.

● Suppose 𝑇′ = (𝑉′, 𝐸′) is a promising
subtree for an MST of 𝐺.

● Let 𝑒 = (𝑢, 𝑣) be a lightest edge from a
node in 𝑇′ to a node outside of 𝑇′ (Prim).

● Then adding (𝑢, 𝑣) to 𝑇′ results in another
promising subtree.

❖

Proof ● Suppose 𝑇mst is an MST that includes 𝑇′

● If 𝑇mst includes 𝑒, we’re done: 𝑇′ + 𝑒 is
promising.

● If it doesn’t include 𝑒, it must have an

edge 𝑓 that connects 𝑇′ to rest of the graph.

● Swap 𝑓 with 𝑒 in 𝑇mst. The result is a

tree, and it must be a MST since 𝜔(𝑒) ≤ 𝜔(𝑓).

● So there is an MST that contains 𝑇′ + 𝑒.

❖

Do you have any questions?

Thank you!

CampusWire!

