
❖

DSC 40B
Lecture 27 : Minimum

Spanning Trees.
Kruskal’s algorithm

❖

Midterm 2 details

● Date: December 3rd
● Time: noon
● Location: Our classroom
● Topics: After midterm1 and up to (including) Bellman-Ford.

○ Lectures 14-25.

❖

Minimum Spanning Trees

❖

Last time: Minimum Spanning Tree
● The minimum spanning tree problem is as follows:

○ Given: A weighted, undirected graph 𝐺 = (𝑉 , 𝐸, 𝜔).
○ Compute: a spanning tree of 𝐺 with minimum cost

(i.e., minimum total edge weight).

● For a given graph, the MST may not be unique.

 2

5

7

10

4

8

103
9

1

11
Cost:
1+2+3+4+5+7+8=30

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

● Is this guaranteed to work? Yes, as
we’ll see.

❖

Last time: Building MSTs

● How do we build a MST efficiently?

● We’ll adopt a greedy approach.
○ Build a tree edge-by-edge.
○ At every step, doing what looks best at the moment.

● This strategy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.

❖

Last time: Two Greedy Approaches

● We’ll look at two greedy algorithms:
○ Last time: Prim’s Algorithm
○ Today: Kruskal’s Algorithm

● Differ in the order in which edges are added to tree.

● Also differ in time complexity.

❖

Prim’s Algorithm, Informally

● Start by picking any node to add to
“tree”, 𝑇.

● While 𝑇 is not a spanning tree,
greedily add lightest edge from a
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the

smallest weight.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst),
where 𝐸mst = ∅.

● Loop through edges in increasing
order of weight.

○ If edge does not create a cycle in
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.

❖

Being Greedy

● Prim: add the node with smallest estimated cost and update
neighbors.
○ Works locally, “grows” a connected tree.

● Kruskal: add the edge with smallest weight.
○ As long as it doesn’t make a cycle.
○ Edge can be anywhere in graph.

❖

Kruskal’s Algorithm (Pseudocode)

def kruskal(graph, weights):
mst = UndirectedGraph()

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights.get)

for (u, v) in sorted_edges:
if u and v are not already connected
if ...:

mst.add_edge(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst

❖

Checking for Connectivity

● Each iteration: check if 𝑢 and 𝑣 are connected in 𝑇 = (𝑉 , 𝐸mst).

● We could do a DFS/BFS on each iteration…

○ Θ(𝑉 + 𝐸mst) = Θ(𝑉) each time.
○ Expensive!

● Remember:
○ If you’re computing something once, use a fast algorithm.
○ If you’re computing it repeatedly, consider a data structure.

❖

Disjoint Set Forests

● Represent a collection of disjoint sets.

 {{1, 5, 6}, {2, 3}, {0}, {4}}

● .union(x, y): Union the sets containing 𝑥 and 𝑦.
● .in_same_set(x, y): Return True/False if 𝑥 and 𝑦 are in the

same set*.

*Usually implemented as a .find(x) method returning
representative of set containing x.

❖

Example
>>> # create a DSF with {{0}, {1}, {2}, {3}, {4}, {5}}
>>> dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
>>> dsf.union(0, 3)
>>> dsf.union(1, 4)
>>> dsf.union(3, 1)
>>> dsf.union(2, 5)
>>> # dsf now represents {{0, 1, 3, 4}, {2, 5}}
>>> dsf.in_same_set(0, 3)
True
>>> dsf.in_same_set(0, 2)
False

❖

Disjoint Set Forests

● Operations take Θ(𝛼(𝑛)) time, where 𝑛 is number of
objects in collection.

● 𝛼(𝑛) is the inverse Ackermann function.

● It grows very, very slowly.

● Essentially constant time.

https://en.wikipedia.org/wiki/Ackermann_function

❖

Disjoint Set Forests

● Can be used to keep track of Connected Components of a
dynamic graph.

● Nodes of Connected Components are disjoint sets.
○ Add an edge (𝑢, 𝑣): .union(u, v)
○ Check if 𝑢 and 𝑣 are connected: .in_same_set(u, v)

● To check if 𝑢, 𝑣 are already connected:
○ BFS/DFS: Θ(𝑉) each time.
○ DSF: Θ(𝛼(𝑉)) each time (essentially Θ(1)).

❖

❖

Time
Complexity

Θ(V)

❖

Time
Complexity

Θ(E log E)

Θ(V)

❖

Time
Complexity

Θ(E log E)

Θ(V)

O(E)

❖

Time
Complexity

Θ(E log E)

Θ(V)

O(E)

𝛼(V) per line

❖

Time
Complexity

Θ(E log E)

Θ(V)

O(E)

𝛼(V) per line

O(E 𝛼(V)) for loop

❖

Time
Complexity

Θ(E log E)

Θ(V)

O(E)

𝛼(V) per line

O(E 𝛼(V)) for loop

Θ(V + E log E + E 𝛼(V))

❖

Time
Complexity

Θ(E log E)

Θ(V)

O(E)

𝛼(V) per line

O(E 𝛼(V)) for loop

Θ(V + E log E)

❖

Time
Complexity

Θ(E log E)

Θ(V)

O(E)

𝛼(V) per line

O(E 𝛼(V)) for loop

Θ(E log E) if assume connected

❖

Time Complexity

● Assume graph is connected. Then 𝐸 = Ω(𝑉).

● Kruskal’s takes Θ(𝐸 log 𝐸) = Θ(𝐸 log 𝑉) time.
○ Dominated by sorting the edges.

● Note: if graph disconnected, Kruskal’s produces a
minimum spanning forest.

❖

Kruskal vs. Prim

❖

Kruskal v. Prim

● Both algorithms for computing MSTs.

● Which is “better”?

● There’s no clear winner.

❖

Time Complexity

● Prim:
○ Binary heap: Θ(𝑉 log 𝑉 + 𝐸 log 𝑉)
○ Fibonacci heap: Θ(𝑉 log 𝑉 + 𝐸)

● Kruskal: Θ(𝐸 log 𝑉)
● If the graph is dense, 𝐸 = Θ(𝑉 2), and Prim’s with Fibonacci

heap “wins”.
○ Θ(𝑉 2) versus Θ(𝑉 2 log 𝑉).

❖

Not so fast...

● Fibonacci heaps are hard to implement, high overhead.

● Prim’s will be faster for very large dense graphs.

● But Kruskal’s may be faster for smaller dense graphs.

● The right choice depends on your application.

❖

Main Idea

Asymptotic time complexity isn’t everything. For small inputs,
the “inefficient” algorithm may beat the “efficient” one.
There’s also ease of implementation to consider.

❖

MSTs and Clustering
Next Time :)

❖

Do you have any questions?

Thank you!

CampusWire!

