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DSC 40B
Lecture 27 : Minimum 

Spanning Trees. 
Kruskal’s algorithm
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Midterm 2 details

● Date: December 3rd
● Time: noon
● Location: Our classroom
● Topics:   After midterm1 and up to (including) Bellman-Ford.

○ Lectures 14-25. 
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Minimum Spanning Trees
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Last time: Minimum Spanning Tree
●  The minimum spanning tree problem is as follows:

○ Given: A weighted, undirected graph 𝐺 = (𝑉 , 𝐸, 𝜔).
○ Compute: a spanning tree of 𝐺 with minimum cost 

(i.e., minimum total edge weight).

●  For a given graph, the MST may not be unique.
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1+2+3+4+5+7+8=30 



❖

Prim’s Algorithm, Informally

● Start by picking any node to add to 
“tree”, 𝑇.

● While 𝑇 is not a spanning tree, 
greedily add lightest edge from a 
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the 

smallest weight.

● Is this guaranteed to work? Yes, as 
we’ll see.
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Last time: Building MSTs

●  How do we build a MST efficiently?

●  We’ll adopt a greedy approach.
○ Build a tree edge-by-edge.
○ At every step, doing what looks best at the moment.

●  This strategy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.
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Last time: Two Greedy Approaches

●  We’ll look at two greedy algorithms:
○ Last time: Prim’s Algorithm
○ Today: Kruskal’s Algorithm

●  Differ in the order in which edges are added to tree.

●  Also differ in time complexity.
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Prim’s Algorithm, Informally

● Start by picking any node to add to 
“tree”, 𝑇.

● While 𝑇 is not a spanning tree, 
greedily add lightest edge from a 
node in 𝑇 to a node not in 𝑇.
○ “Lightest” = edge with the 

smallest weight.
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Kruskal’s Algorithm, Informally

● Start with empty forest: 𝑇 = (𝑉 , 𝐸mst), 
where 𝐸mst = ∅.

● Loop through edges in increasing 
order of weight.

○ If edge does not create a cycle in 
𝑇, add it to 𝑇.

○ If 𝑇 is a spanning tree, break.
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Being Greedy

● Prim: add the node with smallest estimated cost and update 
neighbors.
○ Works locally, “grows” a connected tree.

●  Kruskal: add the edge with smallest weight.
○ As long as it doesn’t make a cycle.
○  Edge can be anywhere in graph.
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Kruskal’s Algorithm (Pseudocode)

def kruskal(graph, weights):
mst = UndirectedGraph()

# sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights.get)

for (u, v) in sorted_edges:
# if u and v are not already connected
if ...:

mst.add_edge(u, v)

# (optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst
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Checking for Connectivity

● Each iteration: check if 𝑢 and 𝑣 are connected in 𝑇 = (𝑉 , 𝐸mst).

● We could do a DFS/BFS on each iteration…

○ Θ(𝑉 + 𝐸mst) = Θ(𝑉 ) each time.
○ Expensive!

●  Remember:
○ If you’re computing something once, use a fast algorithm.
○ If you’re computing it repeatedly, consider a data structure.
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Disjoint Set Forests

●  Represent a collection of disjoint sets.

                     {{1, 5, 6}, {2, 3}, {0}, {4}}

●  .union(x, y): Union the sets containing 𝑥 and 𝑦.
●  .in_same_set(x, y): Return True/False if 𝑥 and 𝑦 are in the 

same set*.

*Usually implemented as a .find(x) method returning 
representative of set containing x.
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Example
>>> # create a DSF with {{0}, {1}, {2}, {3}, {4}, {5}}
>>> dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
>>> dsf.union(0, 3)
>>> dsf.union(1, 4)
>>> dsf.union(3, 1)
>>> dsf.union(2, 5)
>>> # dsf now represents {{0, 1, 3, 4}, {2, 5}}
>>> dsf.in_same_set(0, 3)
True
>>> dsf.in_same_set(0, 2)
False
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Disjoint Set Forests

● Operations take Θ(𝛼(𝑛)) time, where 𝑛 is number of 
objects in collection.

● 𝛼(𝑛) is the inverse Ackermann function.

●  It grows very, very slowly.

●  Essentially constant time.

https://en.wikipedia.org/wiki/Ackermann_function
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Disjoint Set Forests

●  Can be used to keep track of Connected Components of a 
dynamic graph.

●  Nodes of Connected Components are disjoint sets.
○ Add an edge (𝑢, 𝑣):     .union(u, v)
○ Check if 𝑢 and 𝑣 are connected: .in_same_set(u, v)

●  To check if 𝑢, 𝑣 are already connected:
○ BFS/DFS: Θ(𝑉 ) each time.
○ DSF: Θ(𝛼(𝑉 )) each time (essentially Θ(1)).
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Time 
Complexity

Θ(E log E)
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𝛼(V) per line

O(E 𝛼(V) ) for loop
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Time Complexity

●  Assume graph is connected. Then 𝐸 = Ω(𝑉 ).

●  Kruskal’s takes Θ(𝐸 log 𝐸) = Θ(𝐸 log 𝑉 ) time.
○ Dominated by sorting the edges.

● Note: if graph disconnected, Kruskal’s produces a 
minimum spanning forest.
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Kruskal vs. Prim
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Kruskal v. Prim

●  Both algorithms for computing MSTs.

●  Which is “better”?

●  There’s no clear winner.
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Time Complexity

●  Prim:
○ Binary heap: Θ(𝑉 log 𝑉 + 𝐸 log 𝑉 )
○ Fibonacci heap: Θ(𝑉 log 𝑉 + 𝐸)

● Kruskal: Θ(𝐸 log 𝑉 )
● If the graph is dense, 𝐸 = Θ(𝑉 2), and Prim’s with Fibonacci 

heap “wins”.
○ Θ(𝑉 2) versus Θ(𝑉 2 log 𝑉 ).
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Not so fast...

●  Fibonacci heaps are hard to implement, high overhead.

●  Prim’s will be faster for very large dense graphs.

●  But Kruskal’s may be faster for smaller dense graphs.

●  The right choice depends on your application.
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Main Idea

Asymptotic time complexity isn’t everything. For small inputs, 
the “inefficient” algorithm may beat the “efficient” one. 
There’s also ease of implementation to consider.



❖

MSTs and Clustering
Next Time :)
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Do you have any questions?

Thank you!

CampusWire!


