8 A v
o |

DSC 408 i
Lecture 27 : Minimum -

ceeeeee

Spanning Trees.
'P Kruskal’s algorithm

g ;

T ———
-ttt

Midterm 2 details

Date: December 3rd

Time: noon

Location: Our classroom

Topics: After midterm1 and up to (including) Bellman-Ford.
o Lectures 14-25.

11113999

T ————
.............................

93322290

Minimum Spanning Trees
-ttt

==llllllllllllllllllllllll=l=
.-

1 A
=I._, Last time: Minimum Spanning Tree

The minimum spanning tree problem is as follows:

o Given: A weighted, undirected graph G = (V, E, w).

o Compute: a3 spanning tree of G with minimum cost
(i.e., minimum total edge weight).

For a given graph, the MST may not be unique.

Cost:
1+2+3+4+5+7+8=30

e ————
e

==llllllllllllllllllllllll=ll

.I-—' Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.

e While T is not a spanning tree,
greedily add lightest edge from a
node in Tto a node not in 7.

o “Lightest” = edge with the
smallest weight.

Is this guaranteed to work? Yes, as
we'll see.

T ————
e

==llllllllllllllllllllllll=ll

II.__,
= Last time: Building MSTs

e How do we build a MST efficiently?

e We'll adopt a greedy approach.
o Build a tree edge-by-edge.
o At every step, doing what looks best at the moment.

.P This strategy isn’t guaranteed to work in all of life’s

situations, but it works for building MSTs.

B ————T
.............................

N L
| 4 L
" -
B L
=t: Last time: Two Greedy Approaches =
= e We’'ll look at two greedy algorithms: =
o Last time: Prim’s Algorithm
B B
. o Today: Kruskal's Algorithm .
.P e Differ in the order in which edges are added to tree. .
= e Also differ in time complexity. =
C =
=- T R —————
-ttt

==llllllllllllllllllllllll=ll

.I-’ Prim’s Algorithm, Informally

e Start by picking any node to add to
“tree”, T.
9 —0O
’ e While T is not a spanning tree,
\ / greedily add lightest edge from a
node in 7 to a node not in 7.

o “Lightest” = edge with the
smallest weight.

O
O/s

m// <

O

1- rrrrer

T ————
...........................

==llllllllllllllllllllllll=ll

.I-—' Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where E_ . = 2.
\9 O mst

).

mst

V
\ / e Loop through edges in increasing
order of weight.

O
O/s

o If edge does not create a cycle in

q < N T

O o If Tis a spanning tree, break.

1- rrrrer

T ————
...........................

..............................

(]

o L |

b Kruskal'’s Algorithm, Informally b

= - O Start with empty forest: T=(V, E__) =
7 o Wi :T=(V,E__),

L T\ S0to e Ean

|

. O / \9 / V .

. ! L e Loop through edges in increasing .

order of weight. .

o If edge does not create a cycle in .

T, additto T. .

= o If Tis a spanning tree, break. =

L

=-------———-----d...

-ttt

==llllllllllllllllllllllll=ll

.I-—' Kruskal'’s Algorithm, Informally

7 e Start with empty forest: T=(V, E__),

i O where E_ =2,

\9 . mst
e \b / |
I e Loop through edges in increasing

]
O order of weight.

mst

~

rrrenr
-0 7

A\

o If edge does not create a cycle in
T, add itto T.

O

7\
:v
A

O

O o If Tis a spanning tree, break.

e

T ————
Lttt

==llllllllllllllllllllllll=ll

.I-—' Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

reere

—=

o If edge does not create a cycle in
T, add itto T.

o If Tis a spanning tree, break.

e

T ————
Lttt

==llllllllllllllllllllllll=ll

.I-—' Kruskal'’s Algorithm, Informally

. e Start with empty forest: 7= (V, E_),
Y i where E__ = 2.

\o

A
I e Loop through edges in increasing
order of weight.

\\E\R
o~

o If edge does not create a cycle in
T, add itto T.

o If Tis a spanning tree, break.

crerr
—=
7\
O—
S
O
/L

T ————
Lttt

==!lllllllllllllllllllllll=ll

.I-—' Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

o If edge does not create a cycle in
T, add itto T.

o If Tis a spanning tree, break.

T ———
Lttt

EEEEEEEEEE .
crrreee

HlN .-
I pr—— W =

.I-—' Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

—=

o If edge does not create a cycle in
T, add itto T.

I o If Tis a spanning tree, break.

B ————T
.............................

l'-ﬂ-H-Hf

HlN .-
I pr—— W =

.I-—' Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

—=

o If edge does not create a cycle in
T, add itto T.

I o If Tis a spanning tree, break.

B ————T
.............................

l'-ﬂ-H-Hf

==llllllllllllllllllllllll=ll

=I-’ Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

o If edge does not create a cycle in
T, add itto T.

o If Tis a spanning tree, break.

T ————
e

==llllllllllllllllllllllll=ll

=I-’ Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

o If edge does not create a cycle in

. T,add itto T.
-

" o If Tis a spanning tree, break.

=l T —— T ———

==llllllllllllllllllllllll=ll

=I-’ Kruskal'’s Algorithm, Informally

e Start with empty forest: 7= (V , E

where £ =2,
mst

).

mst

e Loop through edges in increasing
order of weight.

o If edge does not create a cycle in
T, add itto T.

o If Tis a spanning tree, break.

T ————
e

Being Greedy

e Prim: add the node with smallest estimated cost and update
neighbors.
o Works locally, "grows” a connected tree.

e Kruskal: add the edge with smallest weight.
o As long as it doesn’t make a cycle.
o Edge can be anywhere in graph.

11113999

T ————
.............................

IlIlllllllllllllllllllll=ll

Kruskal’s Algorithm (Pseudocode)

o

I

l |

. def kruskal(graph, weights):
o

o

o

mst = UndirectedGraph()

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights.get)

for (u, v) in sorted_edges:
if u and v are not already connected
if ...

.P mst.add_edge(u, v)
. # (optional) if mst is now a spanning tree, break

if len(mst.edges) == len(graph.nodes) - 1:
break
= return mst

B ————T
.............................

==llllllllllllllllllllllll=ll

=I..) Checking for Connectivity

).

mst

. e FEach iteration: check if u and v are connectedin 7 = (V , E

. e \We could do a DFS/BFS on each iteration...
o O(V+E t) = @(V) each time.
® Expenswe'

.P Remember:

o If you're computing something once, use a fast algorithm.
I o |If you're computing it repeatedly, consider a data structure.

T ————
.............................

==llllllllllllllllllllllll=ll

=I.-—' Disjoint Set Forests

- ® Represent a collection of disjoint sets.
{{1, 5, 6}, {2, 3}, {0}, {4}}

e .union(x, Yy): Union the sets containing x and y.
e .in_same_set(x, Yy): Return True/False if x and y are in the

.P same set”.

*Usually implemented as a . find(x) method returning
i) representative of set containing x

= -----—----- mud

N A A
——— =aEE
.

Example

>>> # create a DSF with {{0}, {1}, {2}, {3}, {4}, {5}}
>>> dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
>>> dsf.union(0, 3)

>>> dsf.union(1l, 4)

>>> dsf.union(3, 1)

>>> dsf.union(2, 5)

>>> # dsf now represents {{0, 1, 3, 4}, {2, 5}}
>>> dsf.in_same_set(0, 3)

True

>>> dsf.in_same_set(0, 2)

False

"l'f‘l'f"f'!"!."!'

T ————
.............................

Disjoint Set Forests

e QOperations take O(a(n)) time, where n is number of
objects in collection.

e «(n) is the inverse Ackermann function.
e [t grows very, very slowly.

e [Essentially constant time.

11113999

T ————
.............................

https://en.wikipedia.org/wiki/Ackermann_function

==llllllllllllllllllllllll=ll

.I)
= Disjoint Set Forests

- e (Can be used to keep track of Connected Components of a
dynamic graph.

e Nodes of Connected Components are disjoint sets.
o Add an edge (u, v): .union(u, v)
o Check if u and v are connected: .in_same_set(u, v)

.P e To check if u, v are already connected:

o BFS/DFS: ©O(V) each time.

o DSF: O(a(V)) each time (essentially ©(1)).
T T T —————— d
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

!!lllllllllllllllllllll=ll

def kruskal(graph, weights):
mst = UndirectedGraph()

place each node in its own disjoint set
components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):
mst.add_edge(u, v)
components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) -
break

= return mst
T ——

'l' '!.'f"f'!"!."!'

==llllllllllllllllllllllll=l=
.-

Time def kruskal(graph, weights):
Comp[exltq mst = UndirectedGraph()

oV # place each node in its own disjoint set
() components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
.P components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break
=II return mst

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

Time def kruskal(graph, weights):
Complexltq mst = UndirectedGraph()

oV # place each node in its own disjoint set
() components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
@(E Iog E) sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
.P components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break
=II return mst

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

Time def kruskal(graph, weights):
Complexltq mst = UndirectedGraph()

oV # place each node in its own disjoint set
() components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
@(E Iog E) sorted_edges = sorted(graph.edges, key=weights)

O(E) for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
.P components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break
=II return mst

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

Time def kruskal(graph, weights):
Comp[ex]tq mst = UndirectedGraph()

oV # place each node in its own disjoint set
() components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
@(E Iog E) sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
.P per line components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break
=II return mst

B ————T
.............................

==llllllllllllllllllllllll=ll

Time def kruskal(graph, weights):
. Comp[ex]tq mst = UndirectedGraph()

. o V) # place each node in its own disjoint set

components = DisjointSetForest(graph.nodes)

(# sort edges in ascending order by weight

O(E Iog E) sorted_edges = sorted(graph.edges, key=weights)
for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
P V) per line components.union(u, V)

(optional) if mst is now a spanning tree, break
.p O(E (V)) for loop M- s g ot L i

if len(mst.edges) == len(graph.nodes)

break
=II return mst

B ————T
.............................

==llllllllllllllllllllllll=ll

Time def kruskal(graph, weights):
. Comp[ex]tq mst = UndirectedGraph()

. o V) # place each node in its own disjoint set

components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight

@(E Iog E) sorted_edges = sorted(graph.edges, key=weights)
for (u, v) in sorted_edges:

if not components.in_same_set(u, v):

mst.add_edge(u, v)
P V) per line components.union(u, V)

(optional) if mst is now a spanning tree, break
.p O(E (V)) for loop M- s g ot L e

if len(mst.edges) == len(graph.nodes)

break
= ceturn mst ©(V + Elog E + E a(V)

B ————T
.............................

==llllllllllllllllllllllll=ll

Time def kruskal(graph, weights):
. Comp[ex]tq mst = UndirectedGraph()

. o V) # place each node in its own disjoint set

components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight

@(E Iog E) sorted_edges = sorted(graph.edges, key=weights)
for (u, v) in sorted_edges:

if not components.in_same_set(u, v):

mst.add_edge(u, v)
P V) per line components.union(u, V)

(optional) if mst is now a spanning tree, break
.p O(E (V)) for loop M- s g ot L e

if len(mst.edges) == len(graph.nodes)

break
= return mst @(V = Iog E) ..

B ————T
.............................

==llllllllllllllllllllllll=ll

Time def kruskal(graph, weights):
. Comp[ex]tq mst = UndirectedGraph()

. o V) # place each node in its own disjoint set

components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight

@(E Iog E) sorted_edges = sorted(graph.edges, key=weights)
for (u, v) in sorted_edges:

if not components.in_same_set(u, v):

mst.add_edge(u, v)
P V) per line components.union(u, V)

(optional) if mst is now a spanning tree, break
.p O(E (V)) for loop M- s g ot L e

if len(mst.edges) == len(graph.nodes)

P break
eturn mer ©(E log E) if assume connected
T T ——————
.............................

=lllllllllllllllllllllllll=l=
.-

Time Complexity

e Assume graph is connected. Then E = Q(V).

e Kruskal's takes O(E log E) = ©O(E log V') time.
o Dominated by sorting the edges.

e Note: if graph disconnected, Kruskal’s produces a
minimum spanning forest.

= T —— T ———

'l' '!."C"C'!"L'T."

Kruskal vs. Prim

T ———
..............................

Kruskal v. Prim

e Both algorithms for computing MSTs.

e \Which is “better”?

e There’s no clear winner.

11113999

T ————
.............................

!llllllllllllllllllllll=l=
.-

Time Complexity

e Prim:
o Binary heap: ©(VliogV + Elog V)
o Fibonacci heap: O(Vlog V + E)
e Kruskal: O(E log V)
e If the graph is dense, E = O(V 2), and Prim’s with Fibonacci
heap “wins”.
o O(V?2) versus ©(V?log V).

"l'f‘l"!"f'!"!."!'

T ————
.............................

Not so fast...

e Fibonacci heaps are hard to implement, high overhead.
e Prim’s will be faster for very large dense graphs.

e But Kruskal's may be faster for smaller dense graphs.

e The right choice depends on your application.

133193149

T ————
.............................

Main Idea

Asymptotic time complexity isn't everything. For small inputs,
the “inefficient” algorithm may beat the “efficient” one.
There’s also ease of implementation to consider.

11113999

T ————
.............................

93322290

MSTs and Clustering
Next Time :)
Tttt ttrrttrrrrrrrrrrrrrrrr

Thank you!

.I CampusWire!
=l--

)

