

DSC 40B

*Lecture 27 : Minimum
Spanning Trees.*

Kruskal's algorithm

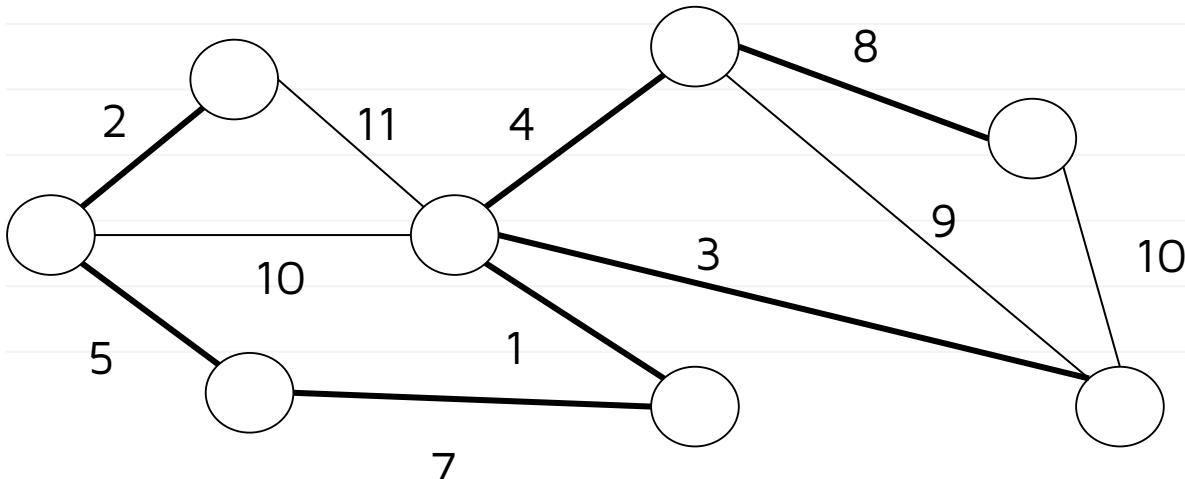
Midterm 2 details

- Date: December 3rd
- Time: noon
- Location: Our classroom
- Topics: After midterm1 and up to (including) Bellman-Ford.
 - Lectures 14-25.

Minimum Spanning Trees

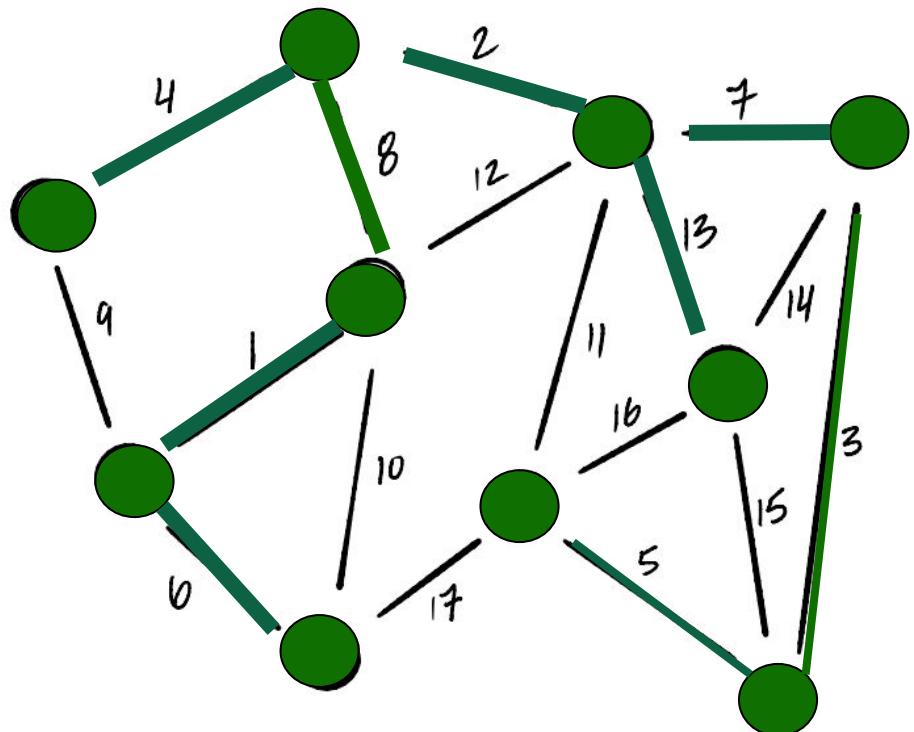
Last time: Minimum Spanning Tree

- The **minimum spanning** tree problem is as follows:
 - **Given**: A weighted, undirected graph $G = (V, E, \omega)$.
 - **Compute**: a spanning tree of G with minimum cost (i.e., minimum total edge weight).
- For a given graph, the MST may not be unique.



Cost:
 $1+2+3+4+5+7+8=30$

Prim's Algorithm, Informally



- Start by picking any node to add to “tree”, T .
- While T is not a spanning tree, greedily add **lightest** edge from a node in T to a node not in T .
 - “Lightest” = edge with the smallest weight.
- Is this guaranteed to work?** Yes, as we'll see.

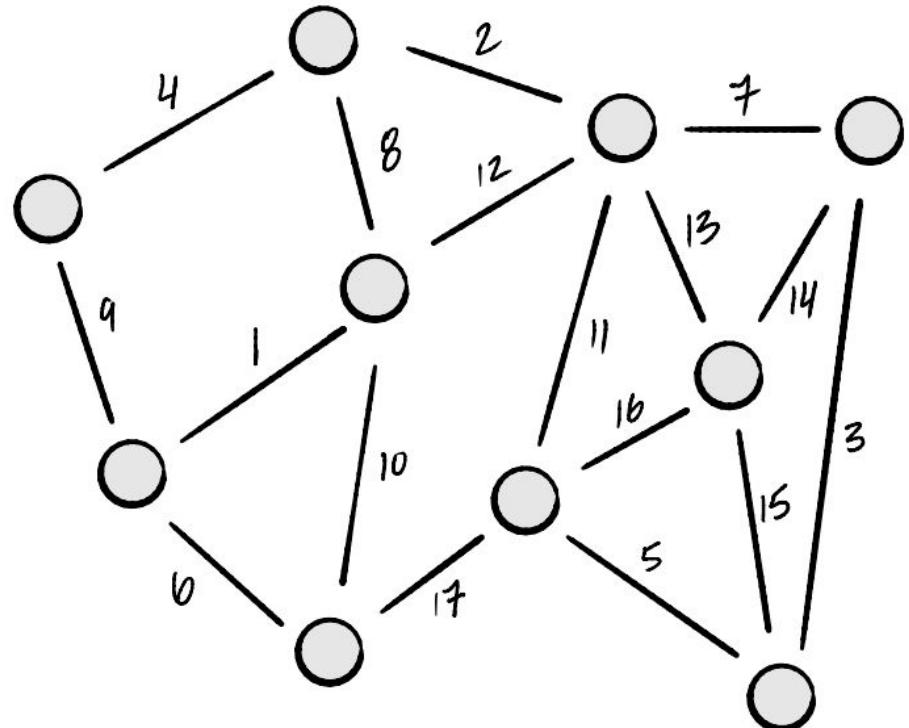
Last time: Building MSTs

- How do we build a MST efficiently?
- We'll adopt a **greedy** approach.
 - Build a tree edge-by-edge.
 - At every step, doing what looks best at the moment.
- This strategy isn't guaranteed to work in all of life's situations, but it works for building MSTs.

Last time: Two Greedy Approaches

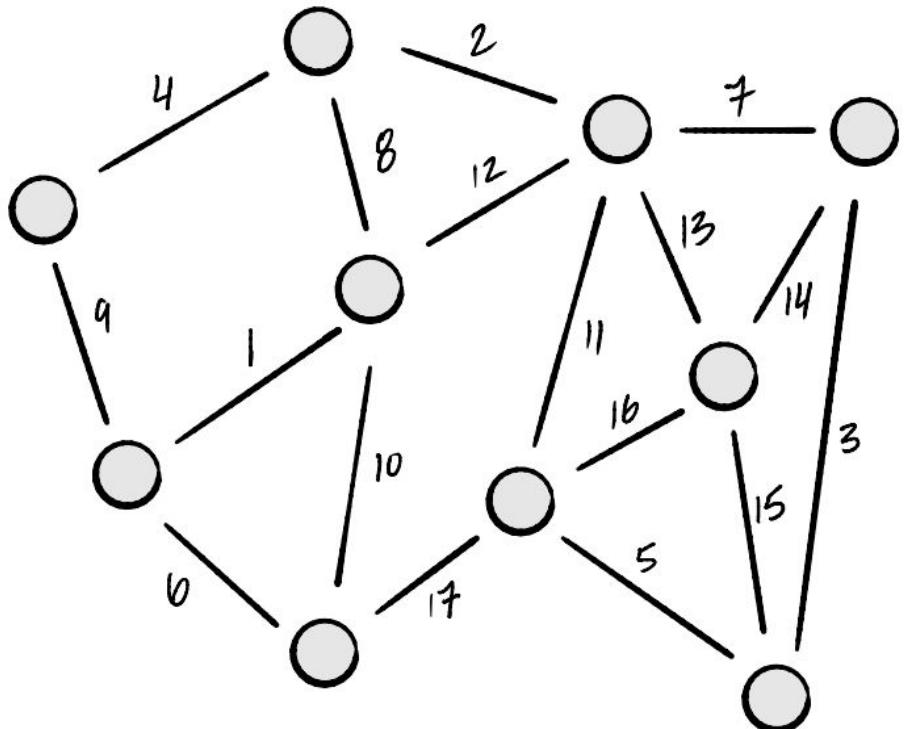
- We'll look at two greedy algorithms:
 - **Last time:** Prim's Algorithm
 - **Today:** **Kruskal's Algorithm**
- Differ in the order in which edges are added to tree.
- Also differ in time complexity.

Prim's Algorithm, Informally



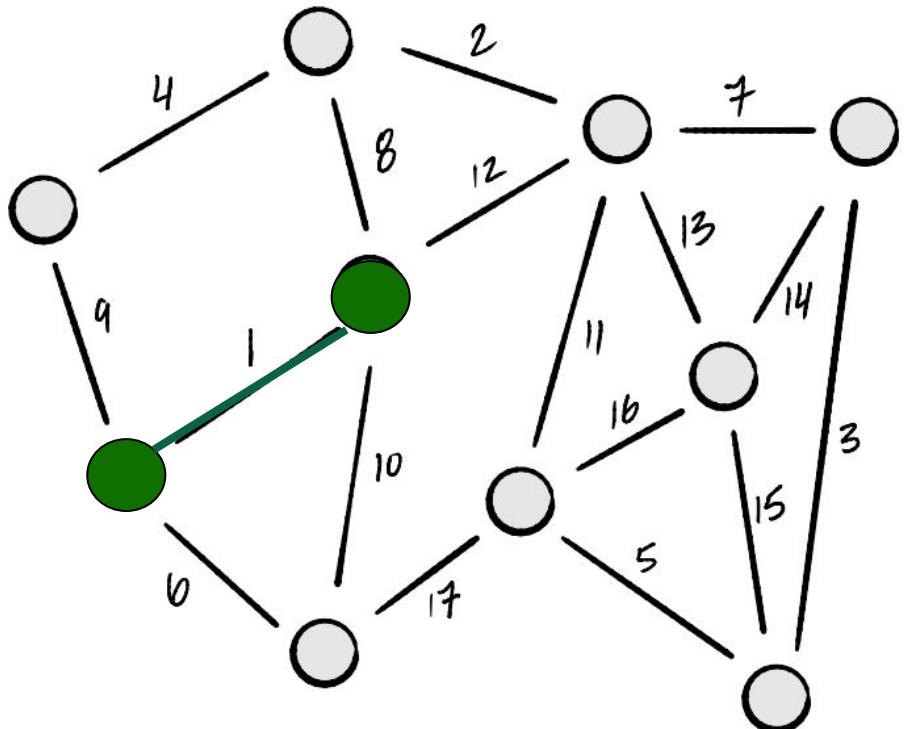
- Start by picking **any** node to add to “tree”, T .
- While T is **not** a spanning tree, greedily add **lightest** edge from a node **in** T to a node **not in** T .
 - “Lightest” = edge with the smallest weight.

Kruskal's Algorithm, Informally



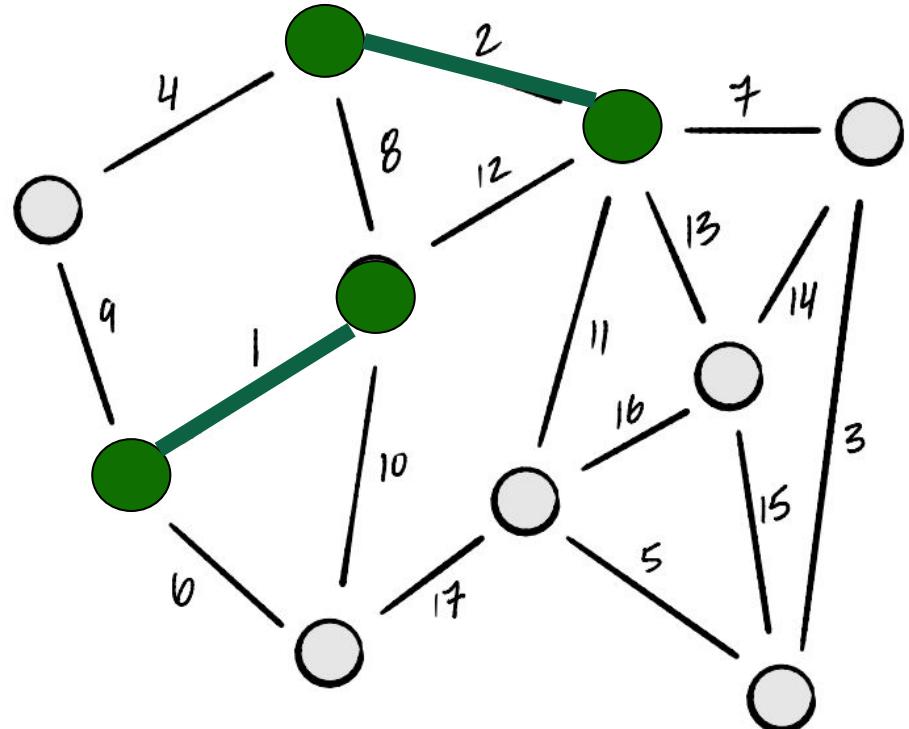
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally



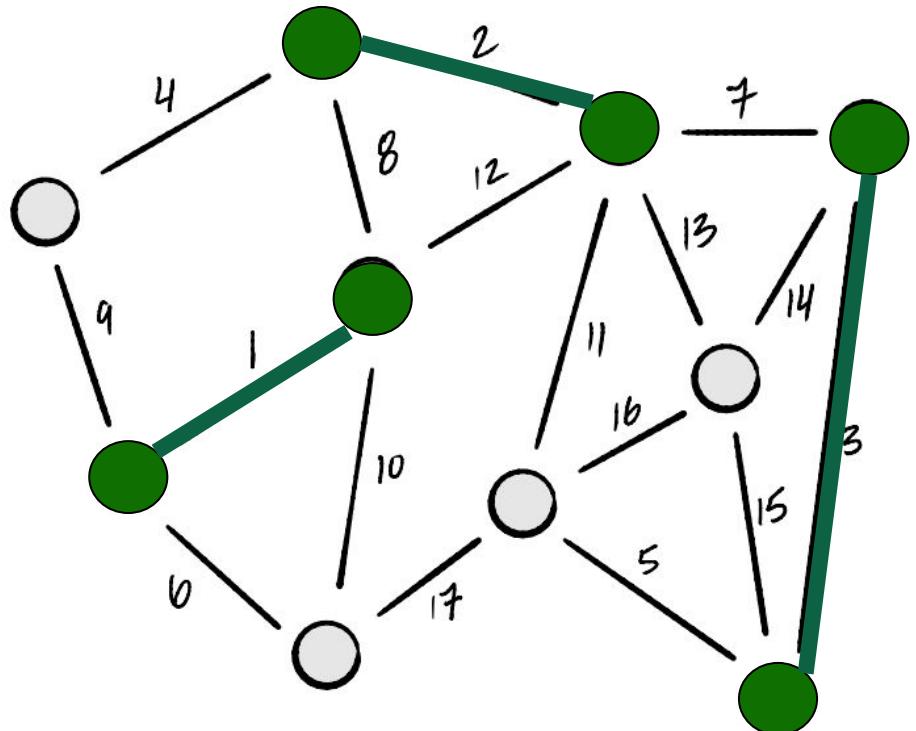
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally

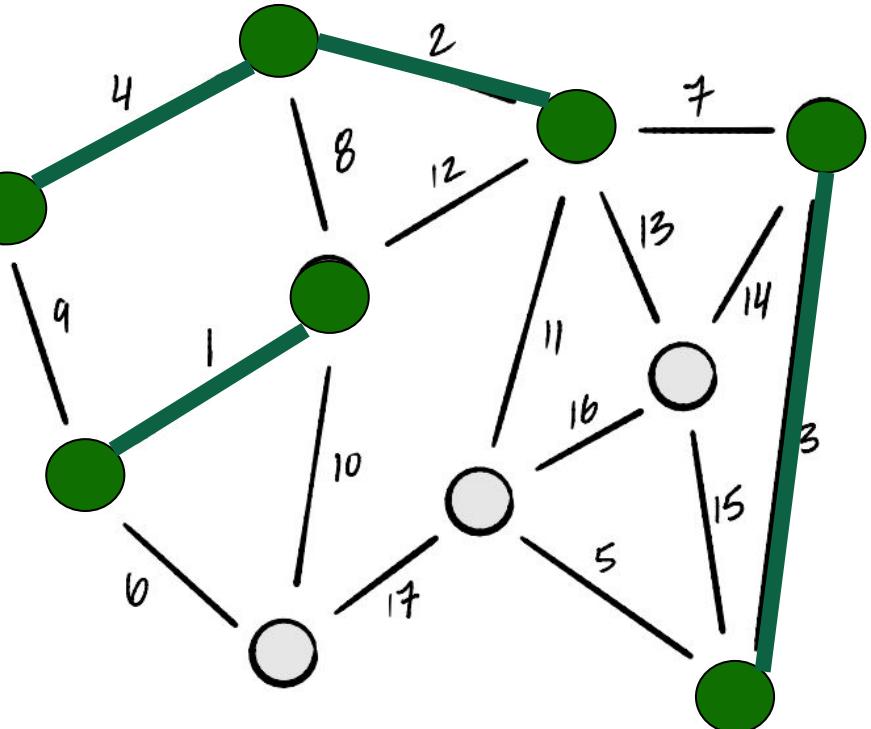


- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally

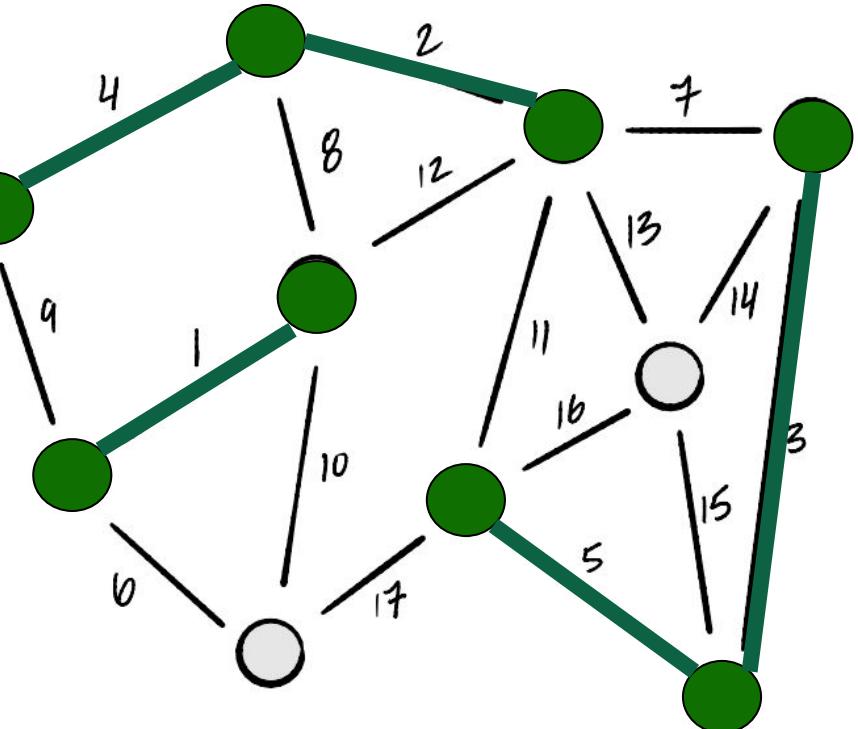


Kruskal's Algorithm, Informally



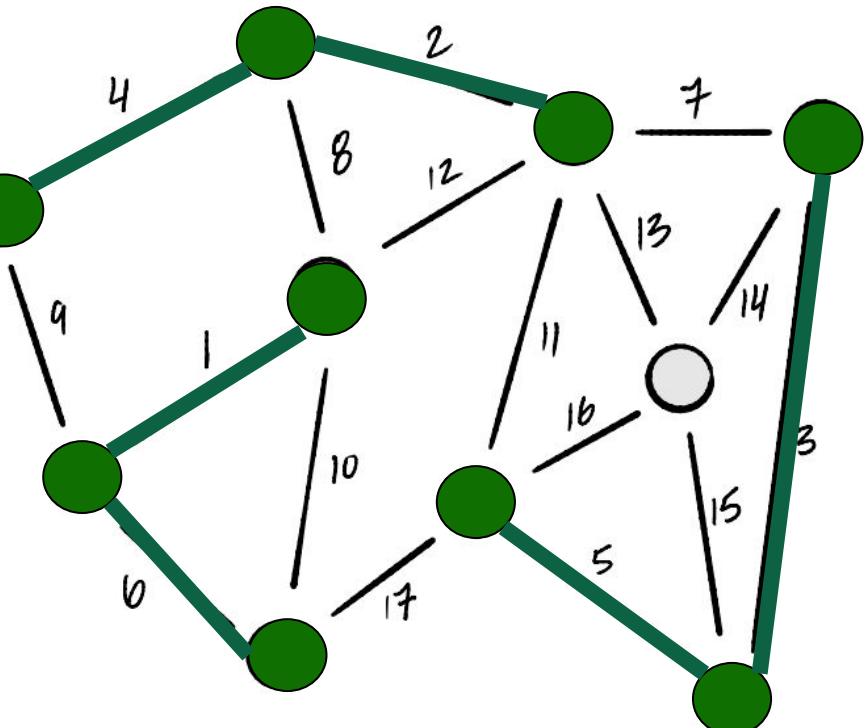
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally



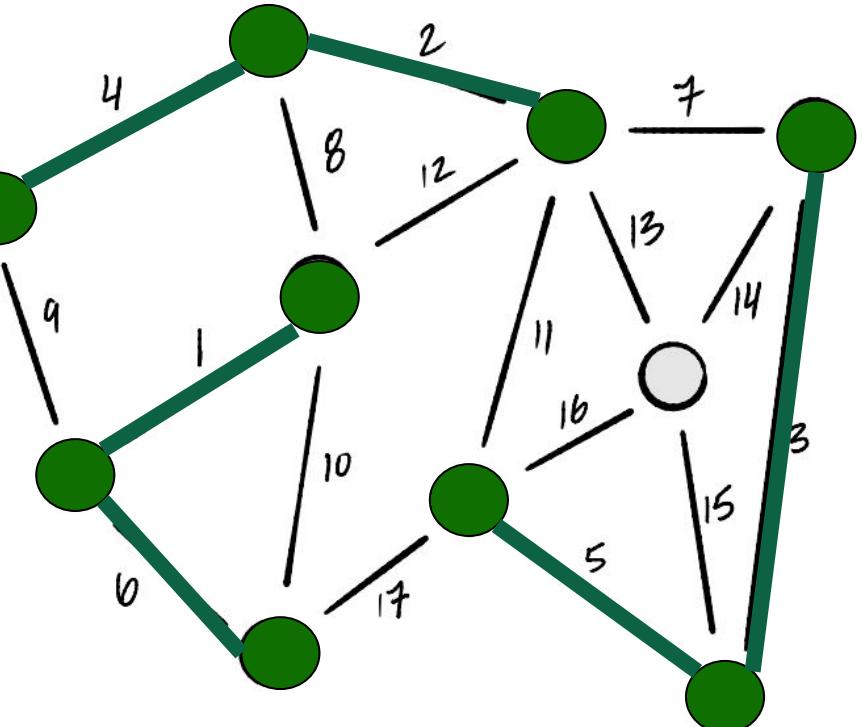
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally



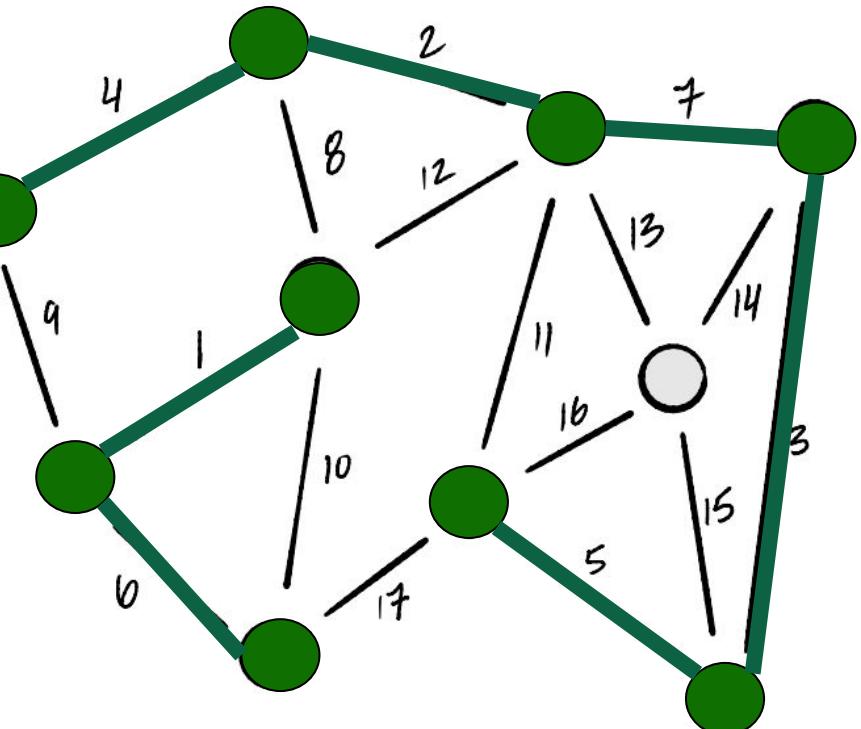
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally



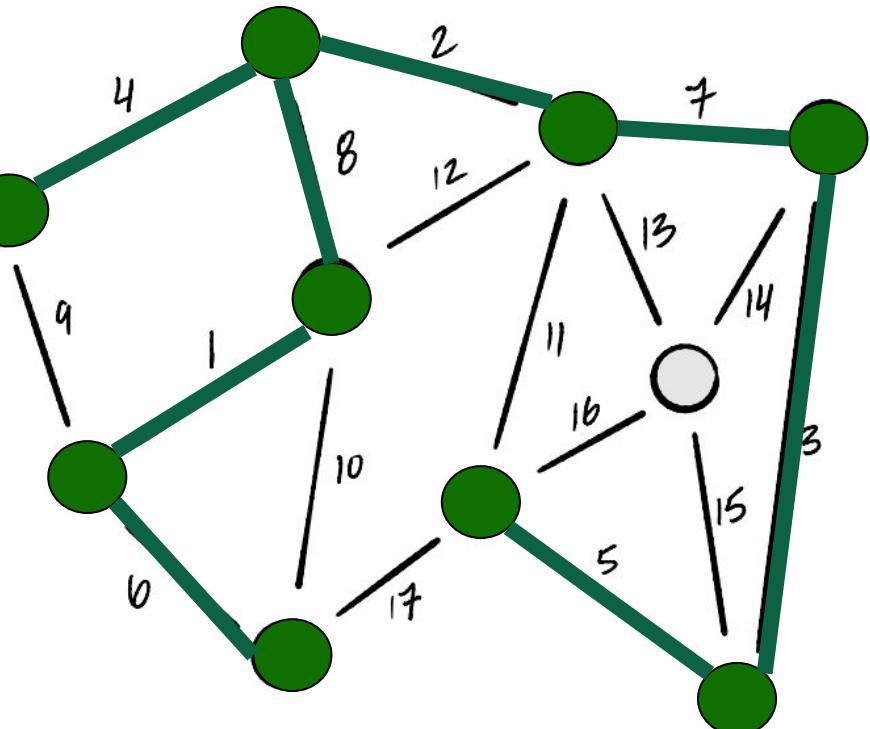
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally



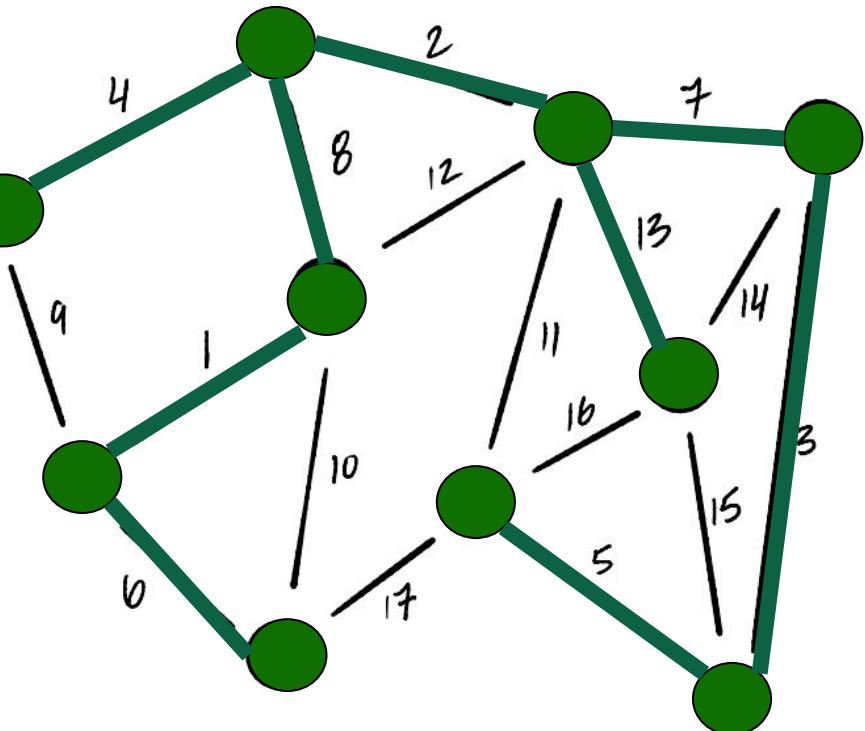
- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally

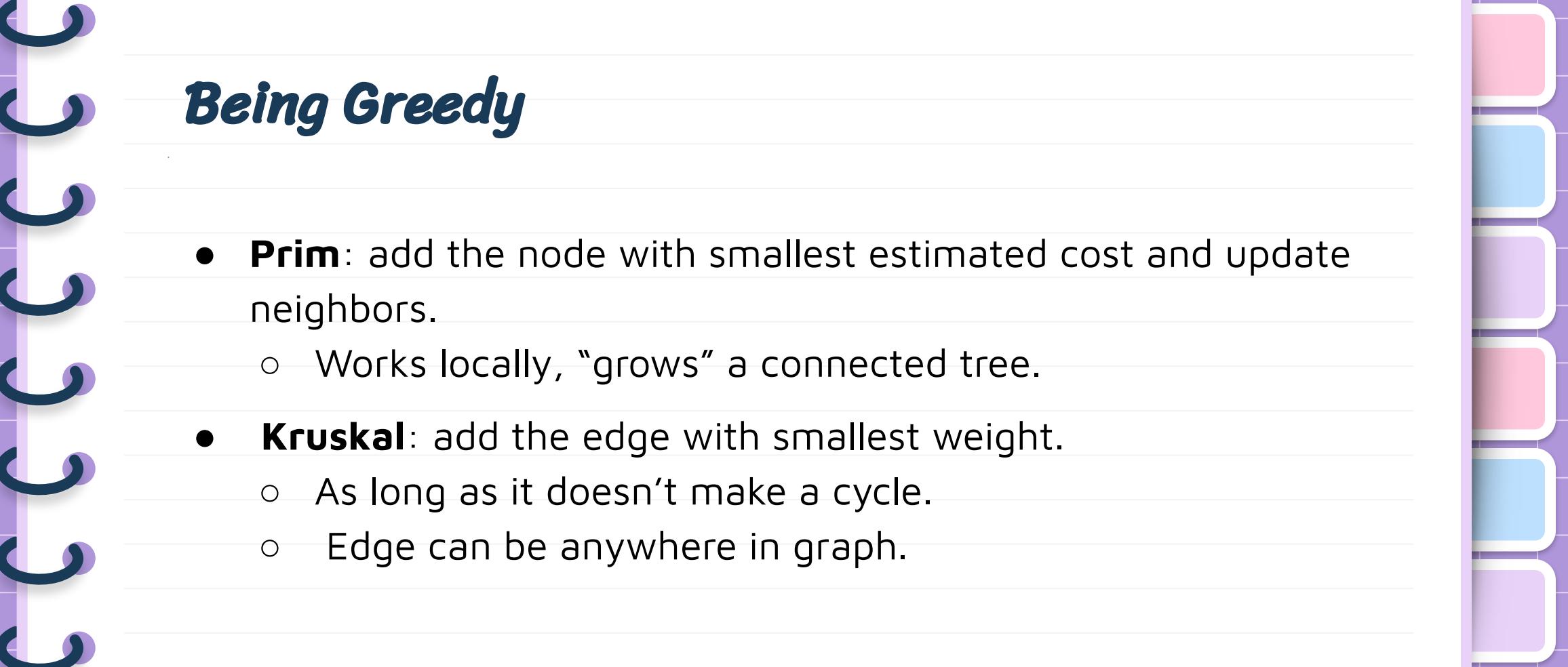


- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.

Kruskal's Algorithm, Informally



- Start with **empty** forest: $T = (V, E_{\text{mst}})$, where $E_{\text{mst}} = \emptyset$.
- Loop through **edges** in *increasing* order of weight.
 - If edge **does not** create a cycle in T , add it to T .
 - If T is a **spanning tree**, break.



Being Greedy

- **Prim**: add the node with smallest estimated cost and update neighbors.
 - Works locally, “grows” a connected tree.
- **Kruskal**: add the edge with smallest weight.
 - As long as it doesn’t make a cycle.
 - Edge can be anywhere in graph.

Kruskal's Algorithm (Pseudocode)

```
def kruskal(graph, weights):  
    mst = UndirectedGraph()  
  
    # sort edges in ascending order by weight  
    sorted_edges = sorted(graph.edges, key=weights.get)  
  
    for (u, v) in sorted_edges:  
        # if u and v are not already connected  
        if ....:  
            mst.add_edge(u, v)  
  
            # (optional) if mst is now a spanning tree, break  
            if len(mst.edges) == len(graph.nodes) - 1:  
                break  
  
    return mst
```

Checking for Connectivity

- Each iteration: check if u and v are connected in $T = (V, E_{\text{mst}})$.
- We *could* do a DFS/BFS on each iteration...
 - $\Theta(V + E_{\text{mst}}) = \Theta(V)$ each time.
 - **Expensive!**
- **Remember:**
 - If you're computing something **once**, use a *fast algorithm*.
 - If you're computing it **repeatedly**, consider a *data structure*.

Disjoint Set Forests

- Represent a collection of disjoint sets.
 $\{\{1, 5, 6\}, \{2, 3\}, \{0\}, \{4\}\}$
- `.union(x, y)`: Union the sets containing x and y .
- `.in_same_set(x, y)`: Return **True/False** if x and y are in the same set*.

**Usually implemented as a `.find(x)` method returning representative of set containing x .*

Example

```
>>> # create a DSF with {{0}, {1}, {2}, {3}, {4}, {5}}
>>> dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
>>> dsf.union(0, 3)
>>> dsf.union(1, 4)
>>> dsf.union(3, 1)
>>> dsf.union(2, 5)
>>> # dsf now represents {{0, 1, 3, 4}, {2, 5}}
```

```
>>> dsf.in_same_set(0, 3)
```

True

```
>>> dsf.in_same_set(0, 2)
```

False

Disjoint Set Forests

- Operations take $\Theta(\alpha(n))$ time, where n is number of objects in collection.
- $\alpha(n)$ is the **inverse Ackermann function.**
- It grows **very, very** slowly.
- *Essentially* constant time.

Disjoint Set Forests

- Can be used to keep track of Connected Components of a **dynamic graph**.
- Nodes of Connected Components are disjoint sets.
 - Add an edge (u, v) : `.union(u, v)`
 - Check if u and v are connected: `.in_same_set(u, v)`
- To check if u, v are already connected:
 - BFS/DFS: $\Theta(V)$ each time.
 - DSF: $\Theta(\alpha(V))$ each time (essentially $\Theta(1)$).

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

        # (optional) if mst is now a spanning tree, break
        if len(mst.edges) == len(graph.nodes) - 1:
            break

    return mst
```

Time Complexity

$\Theta(V)$

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

$O(E)$

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

$O(E)$

$\alpha(V)$ per line

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

$O(E)$

$\alpha(V)$ per line

$O(E \alpha(V))$ for loop

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

$O(E)$

$\alpha(V)$ per line

$O(E \alpha(V))$ for loop

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

$\Theta(V + E \log E + E \alpha(V))$

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

$O(E)$

$\alpha(V)$ per line

$O(E \alpha(V))$ for loop

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

$\Theta(V + E \log E)$

Time Complexity

$\Theta(V)$

$\Theta(E \log E)$

$O(E)$

$\alpha(V)$ per line

$O(E \alpha(V))$ for loop

```
def kruskal(graph, weights):
    mst = UndirectedGraph()

    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)

    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)

    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add_edge(u, v)
            components.union(u, v)

    # (optional) if mst is now a spanning tree, break
    if len(mst.edges) == len(graph.nodes) - 1:
        break

return mst
```

$\Theta(E \log E)$ if assume connected

Time Complexity

- Assume graph is connected. Then $E = \Omega(V)$.
- Kruskal's takes $\Theta(E \log E) = \Theta(E \log V)$ time.
 - Dominated by sorting the edges.
- **Note:** if graph disconnected, Kruskal's produces a **minimum spanning forest**.

Kruskal vs. Prim

Kruskal v. Prim

- Both algorithms for computing MSTs.
- Which is “better”?
- There’s no clear winner.

Time Complexity

- **Prim:**
 - Binary heap: $\Theta(V \log V + E \log V)$
 - Fibonacci heap: $\Theta(V \log V + E)$
- **Kruskal:** $\Theta(E \log V)$
- If the graph is dense, $E = \Theta(V^2)$, and Prim's with Fibonacci heap “wins”.
 - $\Theta(V^2)$ versus $\Theta(V^2 \log V)$.

Not so fast...

- Fibonacci heaps are hard to implement, **high** overhead.
- Prim's will be faster for **very large dense graphs**.
- But Kruskal's may be faster for **smaller dense graphs**.
- The right choice depends on your application.

Main Idea

Asymptotic time complexity isn't everything. For small inputs, the "inefficient" algorithm may beat the "efficient" one. There's also ease of implementation to consider.

MSTs and Clustering
Next Time :)

Thank you!

Do you have any questions?

CampusWire!