Final Exam - DSC 80, Fall 2023

Instructions:
• This exam consists of 11 questions. A total of 160 points are available.
• Questions marked with (M) will be used for your midterm exam redemption.
• Write name in the top right of each page in the space provided.
• Please write neatly in the provided answer boxes. We will not grade work that appears elsewhere.
• Completely fill in bubbles and square boxes.
○ A bubble means that you should only select one choice .
\square A square box means you should select all that apply .
• You may refer to two 8.5" × 11" sheets of notes of your own creation. No other resources or technology (including calculators) are permitted.

 $\bullet\,$ Do not turn the page until instructed to do so.

Last name	
First name	
Student ID number	
UCSD email	
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own. (please sign)	

Name:
This page is intentionally left blank. Feel free to use it as scratch paper.
F**O*

(M) Fill in Python cod using the bus and stop	e below so that the last line of each co DataFrames described on Page 1 of the	ode snippet evaluates to each desired result
(a) (3 points) Compu	te the median minutes late for the 10	01 bus.
.loc[].median()
– –		ines that made at least one stop containing
.groupby()	(f)
(c) (4 points) Compu	te the number of buses in bus whose	next stop is "UTC".
stop.merge(,	
on=	, how=)
].shape[0]
each other. For exevaluate to the nu Dr & Lebon Dr" atwo stops. Hint: The suffixed	ample, if you only use the first four rember 2, since you can go from "Gilman and from "Gilman Dr & Mandeville I es=(1, 2) argument to merge appends	ows of the stop table, then your code should an Dr & Mandeville Ln" to "La Jolla Village Ln" to "Villa La Jolla Dr & Holiday Ct" in s a 1 to column labels in the left table and a
	merge(,
loft on-	right on-	, how=
1e1t_011	, right_on	
suffixes=(1, 2))	, right_on	, · · · · <u> </u>
	(M) Fill in Python code using the bus and stop or while loops in any (a) (3 points) Comput. (b) (4 points) Comput. (b) (4 points) Comput. (c) (4 points) Comput. (d) (8 points) Comput. stop.merge(return

Name: _____

TN T			
Name:			
ranno.			

Sunan wants to work with the time column in bus, but the times aren't consistently formatted. He writes the following code:

```
import re

def convert(y1, y2, y3):
    return int(y1), int(y2) if y2 else 0, y3

def parse(x):
    # Fill me in

bus['time'].apply(parse)
```

Sunan wants the last line of his code to output a Series containing tuples with parsed information from the time column. Each tuple should have three elements: the hour, minute, and "am"/"pm" for each time. For example, the first two values in the time column are '12pm' and '1:15pm', so the first two tuples in the Series should be: (12, 0, 'pm') and (1, 15, 'pm').

Select all the correct implementations of the function parse. Assume that each value in the time column starts with a one or two digits for the hour, followed by an optional colon and an optional two digits for the minute, followed by either "am" or "pm".

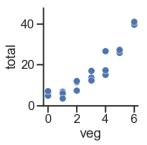
Hint: Calling .groups() on a regular expression match object returns the groups of the match as a tuple. For nested groups, the outermost group is returned first. For example:

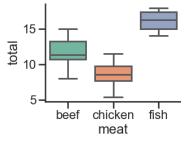
Question 3	using hypothesis tests on the bus dataframe. For te a single sample under the null hypothesis, and is test among the choices given. Assume that the
(a) Are buses more likely to be late in the morning (before	ore 12pm) or the afternoon (after 12pm)?
Simulation procedure:	Test statistic:
<pre> np.random.choice([0, 1], bus.shape[0]) np.random.choice(bus['late'], bus.shape[0], replace=True) Randomly permute the late column.</pre>	 Difference in means Absolute difference in means Difference in proportions Absolute difference in proportions
(b) Are buses equally likely to be early or late?	
Simulation procedure:	Test statistic:
<pre> np.random.choice([0, 1], bus.shape[0]) np.random.choice(bus['late'], bus.shape[0], replace=True) Randomly permute the late column.</pre>	○ Number of values below 0.○ np.mean○ np.std○ TVD○ K-S statistic
(c) Is the late column MAR dependent on the line colu	ımn?
Simulation procedure:	Test statistic:
<pre> np.random.choice([0, 1], bus.shape[0]) np.random.choice(bus['late'], bus.shape[0], replace=True) Randomly permute the late column.</pre>	 Absolute difference in means Absolute difference in proportions TVD K-S statistic
(d) Is the late column MAR dependent on the time colu	umn?
Simulation procedure:	Test statistic:
<pre> np.random.choice([0, 1], bus.shape[0]) np.random.choice(bus['late'], bus.shape[0], replace=True) Randomly permute the late column.</pre>	Absolute difference in proportionsTVDK-S statistic

Name: _____

		I	Name:								
${ m Question} \ 4 \dots$										a	nointe
(M) Answer								• • • • • • •	• • • • • •	9	μυτιιιδ
(a) (3 point	s) What		missingness					n the sto	op datai	frame?	
mechani	Sam got	suspici ne value		ative valu te colum	nes and nn?	deletec	d a few of th				_
	Tiffany i ds. Wha	nade an t is the	$update\ to$	the GPS ss mechan	system nism for	at 8an	n and the sysalues in the	stem was	down f		_
Question 5 (M) Giorgia						••••			• • • • • •	8	points
a = bus['la	te'].mea	ın()	b	= bus['late']	.std())				
She applies a imputation in same (=), or (a) (4 point a:	approxis s) Mean	choose we mately to imputa	whether the the same (\approx tion:	e new value \approx) as the	ues of a e origina : () -	and bal value	will be lowe	er (-), high $\bigcirc \approx$			
Question 6 Consider thr										9	points
Model A				del B				del C			
	Pred	icted			Pred	icted			Pred	icted	
	Yes	No			Yes	No			Yes	No	
eg Yes	40	10	ual	Yes	80	0	ua.l	Yes	80	10	
Yes No No	10	40	Actual	No	10	10	Actual	No	5	5	
i. (3 points) Which	model	has the hig	ghest acc	uracy?						
○ Mode	el A	Model	В ОМ	Iodel C							
ii. (3 points) Which	model	has the hig	ghest pre	cision?						
○ Mode	el A	Model	В ОМ	Iodel C							
iii. (3 points	,			-	all?						
○ Mode	el A	Model	$B \bigcirc M$	Iodel C							

Name:	
Question 7	
<html></html>	
 body>	
<div id="hero">DSC 80 NOTES</div>	
<div class="notes"></div>	
<div class="notes"></div>	
Lecture 1: 5/5 stars!	
<div class="lecture notes"></div>	
Lecture 2: 6/5 stars!!	
<pre><div class="lecture"></div></pre>	
Lecture 3: 10/5 stars!!!!	
V, HOULE	
Assume that the web page is parsed into a Beautiful Soup called	soup.
Fill in each of the expressions below to evaluate to the desired string after each call to find_all()!	ng. Pay careful attention to the indexes
(a) (4 points) "Lecture 1: 5/5 stars!"	
soup.find_all()[0].text
(b) (4 points) "Lecture 2: 6/5 stars!!"	
soup.find_all()[3].text
(c) (4 points) "Lecture 3: 10/5 stars!!!!"	
soup.find_all()[1].text
	/


	sider the following corpus:
Do	cument number Content
	<pre>1 'yesterday rainy today sunny' 2 'yesterday sunny today sunny' 3 'today rainy yesterday today' 4 'yesterday yesterday today today'</pre>
(a)	(6 points) Using a bag-of-words representation, which two documents have the largest dot prod Show your work, then write your final answer in the blanks below.
	Documents and
	bodinonos and
(b)	(4 points) Using a bag-of-words representation, what is the cosine similarity between document and 3? Show your work below, then write your final answer in the blank below.
()	The cosine similarity between documents 2 and 3 is:
(c)	(4 points) Which words have a TF-IDF score of 0 for all four documents? Assume that we base-2 logarithms. Select all the words that apply.
	☐ yesterday
	☐ rainy
	☐ today
	sunny


Name:

Every week, Lauren goes to her local grocery store and buys a varying amount of vegetables but always buys exactly one pound of meat (either beef, fish, or chicken). We use a linear regression model to predict her total grocery bill. We've collected a dataset containing the pounds of vegetables bought, the type of meat bought, and the total bill. Below we display the first few rows of the dataset and two plots generated using the entire training set.

veg	meat	total
1	beef	13
3	fish	19
2	beef	16
0	chicken	9

- (a) Suppose we fit the following linear regression models to predict total. Based on the data and visualizations shown above, determine whether the fitted model weights are positive (+), negative (-), or exactly 0. The notation meat=beef refers to the one-hot encoded meat column with value 1 if the original value in the meat column was beef and 0 otherwise. Likewise, meat=chicken and meat=fish are the one-hot encoded meat columns for chicken and fish, respectively.
 - i. (3 points) $H(x) = w_0$

 w_0 : $\bigcirc + \bigcirc - \bigcirc 0$ \bigcirc Not enough info

ii. (4 points) $H(x) = w_0 + w_1 \cdot \text{veg}$

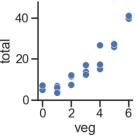
 w_0 : \bigcirc + \bigcirc - \bigcirc 0 \bigcirc Not enough info w_1 : \bigcirc + \bigcirc - \bigcirc 0 \bigcirc Not enough info

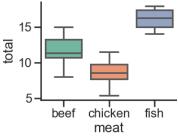
iii. (4 points) $H(x) = w_0 + w_1 \cdot (\text{meat=chicken})$

 w_0 : \bigcirc + \bigcirc - \bigcirc 0 \bigcirc Not enough info w_1 : \bigcirc + \bigcirc - \bigcirc 0 \bigcirc Not enough info

iv. (4 points) $H(x) = w_0 + w_1 \cdot (\text{meat=beef}) + w_2 \cdot (\text{meat=chicken})$

 w_0 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info w_1 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info w_2 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info


v. (4 points) $H(x) = w_0 + w_1 \cdot (\text{meat=beef}) + w_2 \cdot (\text{meat=chicken}) + w_3 \cdot (\text{meat=fish})$


 w_0 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info w_1 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info w_2 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info w_3 : $\bigcirc +$ $\bigcirc \bigcirc 0$ \bigcirc Not enough info

Name: _____

The data and plots from the previous page are reproduced here for convenience:

veg	meat	total
1	beef	13
3	fish	19
2	beef	16
0	chicken	9

Suppose we fit the model: $H(x) = w_0 + w_1 \cdot \text{veg} + w_2 \cdot (\text{meat=beef}) + w_3 \cdot (\text{meat=fish})$ After fitting, we find that $\vec{w} = [-3, 5, 8, 12]$.

(b) (2 points) What is prediction of this model on the **first** point in our dataset?

 $\bigcirc \ \, -3 \quad \bigcirc \ \, 2 \quad \bigcirc \ \, 5 \quad \bigcirc \ \, 10 \quad \bigcirc \ \, 13 \quad \bigcirc \ \, 22 \quad \bigcirc \ \, 25$

(c) (2 points) What is the loss of this model on the **second** point in our dataset, using squared error loss?

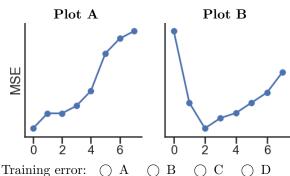
 $\bigcirc \ 0 \quad \bigcirc \ 1 \quad \bigcirc \ 5 \quad \bigcirc \ 6 \quad \bigcirc \ 8 \quad \bigcirc \ 24 \quad \bigcirc \ 25 \quad \bigcirc \ 169$

(d) (8 points) Determine how each change below affects model bias and variance compared to the model described at the top of this page. Shade in all the boxes that apply.

i. Add degree 3 polynomial features.

 \square Increase bias \square Decrease bias \square Increase variance \square Decrease variance

ii. Add a feature of numbers chosen at random between 0 and 1.


 \square Increase bias \square Decrease bias \square Increase variance \square Decrease variance

iii. Collect 100 more points for the training set.

 \square Increase bias \square Decrease bias \square Increase variance \square Decrease variance

iv. Don't use the veg feature.

- ☐ Increase bias ☐ Decrease bias ☐ Increase variance ☐ Decrease variance
- (e) (4 points) Suppose we predict total from veg using 8 models with different degree polynomial features (degrees 0 through 7). Which of the following plots display the training and validation errors of these models? Assume that we plot the degree of polynomial features on the x-axis, mean squared error loss on the y-axis, and the plots share y-axis limits.

Validation error: O A O B O C O D

Name:		
Name.		
ranic.		

(a) (9 points) Suppose we fit decision trees of varying depths to predict y using x1 and x2. The entire training set is shown in the table below. What is the:

x1	x2	у
A	1	0
A	2	1
В	3	0
В	4	1
A	1	0
A	2	1
В	3	0
В	4	1

The entropy of a node containing all the training points?

 \bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 2

Lowest possible entropy of a node in a fitted tree with depth 1 (two leaf nodes)?

 \bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 2

Lowest possible entropy of a node in a fitted tree with depth 2 (four leaf nodes)?

 $\bigcirc \ 0 \quad \bigcirc \ 0.5 \quad \bigcirc \ 1 \quad \bigcirc \ 2$

(b) Suppose we write the following code:

```
hyperparameters = {
     'n_estimators': [10, 100, 1000], # number of trees per forest
     'max_depth': [None, 100, 10] # max depth of each tree
}
grids = GridSearchCV(
    RandomForestClassifier(), param_grid=hyperparameters,
     cv=3, # 3-fold cross-validation
)
grids.fit(X_train, y_train)
```

Answer the following questions with a single number. Write your answer in the blank below each question.

- i. (3 points) How many random forests are fit in total?
- ii. (3 points) How many decision trees are fit in total?
- iii. (3 points) How many times in total is the first point in X_{train} used to train a decision tree?

Page 11 of 12

Name: _	
Question 11	0 points
•	D Data Science (or use this page for scratch work)