
Final Exam Solutions - DSC 80, Fall 2023

Instructions:

• This exam consists of 11 questions. A total of 160 points are available.

• Questions marked with (M) will be used for your midterm exam redemption.

• Write name in the top right of each page in the space provided.

• Please write neatly in the provided answer boxes. We will not grade work that appears elsewhere.

• Completely fill in bubbles and square boxes.
⃝ A bubble means that you should only select one choice.
2 A square box means you should select all that apply.

• You may refer to two 8.5" × 11" sheets of notes of your own creation. No other resources or
technology (including calculators) are permitted.

• Do not turn the page until instructed to do so.

Last name

First name

Student ID number

UCSD email

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)
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This page is intentionally left blank. Feel free to use it as scratch paper.
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Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 points
(M) Fill in Python code below so that the last line of each code snippet evaluates to each desired result,
using the bus and stop DataFrames described on Page 1 of the Reference Sheet. You may not use for
or while loops in any answer for this question.

(a) (3 points) Compute the median minutes late for the 101 bus.

bus.loc[ bus[’line’] == 101, ’late’ ].median()

(b) (4 points) Compute a copy of bus with only the bus lines that made at least one stop containing
the string “Myers Ln”.

def f(x):

return any(x[’stop’].str.contains(’Myers’))

bus.groupby( ’line’ ). filter (f)

(c) (4 points) Compute the number of buses in bus whose next stop is "UTC".

x = stop.merge( bus ,

on= [’line’, ’stop’] , how= ’inner’ )

x[ x[’next’] == ’UTC’ ].shape[0]

(d) (8 points) Compute the number of unique pairs of bus stops that are exactly two stops away from
each other. For example, if you only use the first four rows of the stop table, then your code should
evaluate to the number 2, since you can go from “Gilman Dr & Mandeville Ln” to “La Jolla Village
Dr & Lebon Dr” and from “Gilman Dr & Mandeville Ln” to “Villa La Jolla Dr & Holiday Ct” in
two stops.
Hint: The suffixes=(1, 2) argument to merge appends a 1 to column labels in the left table and a
2 to column labels in the right table whenever the merged tables share column labels.

m = stop .merge( stop ,

left_on= ’next’ , right_on= ’stop’ , how= ’inner’ ,

suffixes=(1, 2))

(m[ [’stop1’, ’next2’] ]

.drop_duplicates().shape[0])
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Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 points
Sunan wants to work with the time column in bus, but the times aren’t consistently formatted. He writes
the following code:

import re

def convert(y1, y2, y3):
return int(y1), int(y2) if y2 else 0, y3

def parse(x):
# Fill me in

bus['time'].apply(parse)

Sunan wants the last line of his code to output a Series containing tuples with parsed information from
the time column. Each tuple should have three elements: the hour, minute, and “am”/“pm” for each
time. For example, the first two values in the time column are ’12pm’ and ’1:15pm’, so the first two
tuples in the Series should be: (12, 0, ’pm’) and (1, 15, ’pm’).
Select all the correct implementations of the function parse. Assume that each value in the time column
starts with a one or two digits for the hour, followed by an optional colon and an optional two digits for
the minute, followed by either “am” or “pm”.
Hint: Calling .groups() on a regular expression match object returns the groups of the match as a tuple.
For nested groups, the outermost group is returned first. For example:

>>> re.match(r'(..(...))', 'hello').groups()
('hello', 'llo')

■ def parse(x):
res = x[:-2].split(':')
return convert(res[0], res[1] if len(res) == 2 else 0, x[-2:])

2 def parse(x):
res = re.match(r'(\d+):(\d+)([apm]{2})', x).groups()
return convert(res[0], res[1], res[2])

■ def parse(x):
res = re.match(r'(\d+)(:(\d+))?(am|pm)', x).groups()
return convert(res[0], res[2], res[3])

2 def parse(x):
res = re.match(r'(.+(.{3})?)(..)', x).groups()
return convert(res[0], res[1], res[2])
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 points
(M) Dylan wants to answer the following questions using hypothesis tests on the bus dataframe. For
each test, select the one correct procedure to simulate a single sample under the null hypothesis, and
select the one correct test statistic for the hypothesis test among the choices given. Assume that the
time column of the bus dataframe has already been parsed into timestamps.

(a) Are buses more likely to be late in the morning (before 12pm) or the afternoon (after 12pm)?

Simulation procedure:

⃝ np.random.choice([0, 1], bus.shape[0])

⃝ np.random.choice(bus[’late’],
bus.shape[0], replace=True)

⃝ Randomly permute the late column.

Test statistic:

⃝ Difference in means
⃝ Absolute difference in means
⃝ Difference in proportions
⃝ Absolute difference in proportions

(Both choices 1 and 3 were marked correct
for this problem.)

(b) Are buses equally likely to be early or late?

Simulation procedure:

⃝ np.random.choice([0, 1], bus.shape[0])

⃝ np.random.choice(bus[’late’],
bus.shape[0], replace=True)

⃝ Randomly permute the late column.

Test statistic:

⃝ Number of values below 0.
⃝ np.mean

⃝ np.std

⃝ TVD
⃝ K-S statistic

(Both choices 1 and 2 were marked correct
for this problem.)

(c) Is the late column MAR dependent on the line column?

Simulation procedure:

⃝ np.random.choice([0, 1], bus.shape[0])

⃝ np.random.choice(bus[’late’],
bus.shape[0], replace=True)

⃝ Randomly permute the late column.

Test statistic:

⃝ Absolute difference in means
⃝ Absolute difference in proportions
⃝ TVD
⃝ K-S statistic

(d) Is the late column MAR dependent on the time column?

Simulation procedure:

⃝ np.random.choice([0, 1], bus.shape[0])

⃝ np.random.choice(bus[’late’],
bus.shape[0], replace=True)

⃝ Randomly permute the late column.

Test statistic:

⃝ Absolute difference in proportions
⃝ TVD
⃝ K-S statistic
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Question 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 points
(M) Answer the following questions about missingness mechanisms.
(a) (3 points) What is the missingness mechanism for the next column in the stop dataframe?

⃝ NMAR ⃝ MAR ⃝ MCAR ⃝ Missing by design
(b) (3 points) Suppose that the missing values in late column from the bus dataframe are missing

because Sam got suspicious of negative values and deleted a few of them. What is the missingness
mechanism for the values in the late column?
⃝ NMAR ⃝ MAR ⃝ MCAR ⃝ Missing by design

(c) (3 points) Suppose that the missing values in late column from the bus dataframe are missing
because Tiffany made an update to the GPS system at 8am and the system was down for 15 minutes
afterwards. What is the missingness mechanism for the values in the late column?
⃝ NMAR ⃝ MAR ⃝ MCAR ⃝ Missing by design

Question 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 points
(M) Giorgia defines the following variables:

a = bus['late'].mean() b = bus['late'].std()

She applies the imputation methods below to the late column, then recalculates a and b. For each
imputation method, choose whether the new values of a and b will be lower (-), higher (+), exactly the
same (=), or approximately the same (≈) as the original values of a and b.
(a) (4 points) Mean imputation:

a: ⃝ - ⃝ + ⃝ = ⃝ ≈ b: ⃝ - ⃝ + ⃝ = ⃝ ≈
(b) (4 points) Probabilistic imputation:

a: ⃝ - ⃝ + ⃝ = ⃝ ≈ b: ⃝ - ⃝ + ⃝ = ⃝ ≈

Question 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 points
Consider three classifiers with the following confusion matrices:

Model A Model B Model C

Predicted

Yes No

A
ct

ua
l Yes 40 10

No 10 40

Predicted

Yes No

A
ct

ua
l Yes 80 0

No 10 10

Predicted

Yes No

A
ct

ua
l Yes 80 10

No 5 5

i. (3 points) Which model has the highest accuracy?
⃝ Model A ⃝ Model B ⃝ Model C

ii. (3 points) Which model has the highest precision?
⃝ Model A ⃝ Model B ⃝ Model C

iii. (3 points) Which model has the highest recall?
⃝ Model A ⃝ Model B ⃝ Model C
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Question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 points
Alan set up a web page for his DSC 80 notes with the following HTML:

<html>
<body>
<div id="hero">DSC 80 NOTES</div>
<div class="notes">
<div class="notes">
<p>Lecture 1: 5/5 stars!</p>

</div>
<div class="lecture notes">
<p>Lecture 2: 6/5 stars!!</p>

</div>
</div>
<div class="lecture">
<p>Lecture 3: 10/5 stars!!!!</p>

</div>
</body>

</html>

Assume that the web page is parsed into a BeautifulSoup called soup.
Fill in each of the expressions below to evaluate to the desired string. Pay careful attention to the indexes
after each call to find_all()!
(a) (4 points) "Lecture 1: 5/5 stars!"

soup.find_all( ’p’ )[0].text

(b) (4 points) "Lecture 2: 6/5 stars!!"

soup.find_all( ’div’ )[3].text

(c) (4 points) "Lecture 3: 10/5 stars!!!!"

soup.find_all( class_=’lecture’ )[1].text

Page 7 of 12



Name:

Question 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 points
Consider the following corpus:

Document number Content
1 ’yesterday rainy today sunny’
2 ’yesterday sunny today sunny’
3 ’today rainy yesterday today’
4 ’yesterday yesterday today today’

(a) (6 points) Using a bag-of-words representation, which two documents have the largest dot product?
Show your work, then write your final answer in the blanks below.

Solution: The bag-of-words representation for the documents is:
Document yesterday rainy today sunny

1 1 1 1 1
2 1 0 1 2
3 1 1 2 0
4 2 0 2 0

The dot product between documents 3 and 4 is 6, which is the highest among all pairs of
documents.

Documents 3 and 4

(b) (4 points) Using a bag-of-words representation, what is the cosine similarity between documents 2
and 3? Show your work below, then write your final answer in the blank below.

Solution: The dot product between documents 2 and 3 is:

1 + 0 + 2 + 0 = 3 (1)

The magnitude of document 2 is equal to document 3 and is:

√
12 + 02 + 12 + 22 =

√
6 (2)

So, the cosine similarity is:

3√
6 ×

√
6

= 1
2 (3)

The cosine similarity between documents 2 and 3 is: 0.5 .
(c) (4 points) Which words have a TF-IDF score of 0 for all four documents? Assume that we use

base-2 logarithms. Select all the words that apply.
■ yesterday

2 rainy

■ today

2 sunny
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Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 points
Every week, Lauren goes to her local grocery store and buys a varying amount of vegetables but always
buys exactly one pound of meat (either beef, fish, or chicken). We use a linear regression model to predict
her total grocery bill. We’ve collected a dataset containing the pounds of vegetables bought, the type
of meat bought, and the total bill. Below we display the first few rows of the dataset and two plots
generated using the entire training set.

veg meat total
1 beef 13
3 fish 19
2 beef 16
0 chicken 9

(a) Suppose we fit the following linear regression models to predict total. Based on the data and
visualizations shown above, determine whether the fitted model weights are positive (+), negative
(-), or exactly 0. The notation meat=beef refers to the one-hot encoded meat column with value
1 if the original value in the meat column was beef and 0 otherwise. Likewise, meat=chicken and
meat=fish are the one-hot encoded meat columns for chicken and fish, respectively.

i. (3 points) H(x) = w0
w0: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info

ii. (4 points) H(x) = w0 + w1 · veg
w0: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w1: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info

iii. (4 points) H(x) = w0 + w1 · (meat=chicken)
w0: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w1: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info

iv. (4 points) H(x) = w0 + w1 · (meat=beef) + w2 · (meat=chicken)
w0: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w1: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w2: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info

v. (4 points) H(x) = w0 + w1 · (meat=beef) + w2 · (meat=chicken) + w3 · (meat=fish)
w0: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w1: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w2: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
w3: ⃝ + ⃝ - ⃝ 0 ⃝ Not enough info
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The data and plots from the previous page are reproduced here for convenience:
veg meat total
1 beef 13
3 fish 19
2 beef 16
0 chicken 9

Suppose we fit the model: H(x) = w0 + w1 · veg + w2 · (meat=beef) + w3 · (meat=fish)
After fitting, we find that w⃗ = [−3, 5, 8, 12].

(b) (2 points) What is prediction of this model on the first point in our dataset?
⃝ -3 ⃝ 2 ⃝ 5 ⃝ 10 ⃝ 13 ⃝ 22 ⃝ 25

(c) (2 points) What is the loss of this model on the second point in our dataset, using squared error
loss?
⃝ 0 ⃝ 1 ⃝ 5 ⃝ 6 ⃝ 8 ⃝ 24 ⃝ 25 ⃝ 169

(d) (8 points) Determine how each change below affects model bias and variance compared to the model
described at the top of this page. Shade in all the boxes that apply.

i. Add degree 3 polynomial features.
2 Increase bias ■ Decrease bias ■ Increase variance 2 Decrease variance

ii. Add a feature of numbers chosen at random between 0 and 1.
2 Increase bias 2 Decrease bias ■ Increase variance 2 Decrease variance

iii. Collect 100 more points for the training set.
2 Increase bias 2 Decrease bias 2 Increase variance ■ Decrease variance

iv. Don’t use the veg feature.
■ Increase bias 2 Decrease bias 2 Increase variance ■ Decrease variance

(e) (4 points) Suppose we predict total from veg using 8 models with different degree polynomial
features (degrees 0 through 7). Which of the following plots display the training and validation
errors of these models? Assume that we plot the degree of polynomial features on the x-axis, mean
squared error loss on the y-axis, and the plots share y-axis limits.

Plot A Plot B Plot C Plot D

Training error: ⃝ A ⃝ B ⃝ C ⃝ D
Validation error: ⃝ A ⃝ B ⃝ C ⃝ D
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Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 points
(a) (9 points) Suppose we fit decision trees of varying depths to predict y using x1 and x2. The entire

training set is shown in the table below. What is the:

x1 x2 y

A 1 0

A 2 1

B 3 0

B 4 1

A 1 0

A 2 1

B 3 0

B 4 1

The entropy of a node containing all the training points?

⃝ 0 ⃝ 0.5 ⃝ 1 ⃝ 2

Lowest possible entropy of a node in a fitted tree with depth 1 (two leaf nodes)?

⃝ 0 ⃝ 0.5 ⃝ 1 ⃝ 2

Lowest possible entropy of a node in a fitted tree with depth 2 (four leaf nodes)?

⃝ 0 ⃝ 0.5 ⃝ 1 ⃝ 2

(b) Suppose we write the following code:
hyperparameters = {

'n_estimators': [10, 100, 1000], # number of trees per forest
'max_depth': [None, 100, 10] # max depth of each tree

}
grids = GridSearchCV(

RandomForestClassifier(), param_grid=hyperparameters,
cv=3, # 3-fold cross-validation

)
grids.fit(X_train, y_train)

Answer the following questions with a single number. Write your answer in the blank below each
question.

i. (3 points) How many random forests are fit in total?

27

ii. (3 points) How many decision trees are fit in total?

9990

iii. (3 points) How many times in total is the first point in X_train used to train a decision tree?

6660
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Question 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 points
Optional: Draw a Picture About UCSD Data Science (or use this page for scratch work)
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