Midterm Exam - DSC 80, Fall 2023

Instructions:

- This exam consists of 5 questions. A total of 100 points are available.
- Write name in the top right of each page in the space provided.
- Please write neatly in the provided answer boxes. We will not grade work that appears elsewhere.
- Completely fill in bubbles and square boxes.

A bubble means that you should only select one choice.A square box means you should select all that apply.

- You may refer to one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of notes of your own creation. No other resources or technology (including calculators) are permitted.
- Do not turn the page until instructed to do so.

Last name	
First name	
Student ID number	
UCSD email	
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own. (please sign)	

Name:

This page is intentionally left blank, but feel free to use it as scratch paper.

Name: \qquad

Question 1 24 points
Fill in Python code below so that the last line of each part evaluates to each desired result, assuming that the following tables are both stored as Pandas DataFrames. You may not use for or while loops in any answer for this question. Only the first few rows are shown for each table.

The df table (left) records what people ate in kilograms (kg) on each date in 2023. For example, the first row records that Sam ate 0.2 kg of Ribeye on Jan 1, 2023. The foods table (right) records the carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions it takes to produce each kind of food. For example, the first row in the foods table shows that growing 1 kg of mung beans produces 0.1 kg of CO_{2}.

	date	name	food	weight		co2/kg	
$\mathbf{0}$	$2023-01-01$	Sam	Ribeye	0.20		name	
$\mathbf{1}$	$2023-01-01$	Sam	Pinto beans	0.10		Mung beans	0.1
$\mathbf{2}$	$2023-01-01$	Lauren	Mung beans	0.25		Nava beans	2.5
$\mathbf{3}$	$2023-01-02$	Lauren	Lima beans	0.30		NY strip	100.0
$\mathbf{4}$	$2023-01-02$	Sam	Sirloin	0.30		Sirloin	80.0

(a) (3 points) Find the total kg of food eaten for each day and each person in df as a Series.
df.groupby (\qquad)]. sum()
(b) (3 points) Find all the rows in df where Tina was the person eating.
df. \qquad
(c) (5 points) Find all the unique people who did not eat any food containing the word "beans".
def foo(x):
return
df.groupby (\qquad). \qquad (foo)['name']. unique()
(d) (5 points) Create a copy of df that has one extra column called words that contains the number of words for each value in the food column. Assume that words are separated by one space character. For example, "Pinto beans" has two words.

```
def f(x):
```

return \qquad
\qquad
(e) (8 points) Find the total kg of CO_{2} produced by each person in df . If a food in df doesn't have a matching value in foods, assume that the food generates 100 kg of CO_{2} per kg of food.

```
df2 = df.merge(foods,
```

\qquad

```-)
(df2.assign(
```

\qquad

```
.groupby('name')['c'].sum())
```

\qquad

Question 2

 16 pointsFor this question, we'll continue using the df and foods tables from Question 1. Dylan and Giorgia want to compare their CO_{2} emissions. They added a new column called bean to df that containing True if the food was a bean (e.g. "Pinto beans") and False otherwise. Then, they compute the following pivot table:

	Dylan's co2/kg	Giorgia's co2/kg
bean=True	5	10
bean=False	50	80

Each entry in the pivot table is the average CO_{2} emissions for Dylan and Giorgia per kg of food they ate $\left(\mathrm{CO}_{2} / \mathrm{kg}\right)$ for both bean and non-bean foods.
(a) (8 points) Suppose that overall, Dylan produced an average of $41 \mathrm{CO}_{2} / \mathrm{kg}$ of food he ate, while Giorgia produced an average of $38 \mathrm{CO}_{2} / \mathrm{kg}$. Determine whether each statement is definitely true (T), definitely false (F), or whether more information is needed (M) beyond this information and the pivot table above.

O	$\bigcirc \mathrm{F}$	$\bigcirc \mathrm{M}$	This is an example of Simpson's Paradox.
O	$\bigcirc \mathrm{F}$	$\bigcirc \mathrm{M}$	Dylan ate at least as many kg of bean foods compared to Giorgia.
T	$\bigcirc \mathrm{F}$	$\bigcirc \mathrm{M}$	Giorgia ate a higher proportion of bean foods than Dylan.
T	$\bigcirc \mathrm{F}$	$\bigcirc \mathrm{M}$	Dylan emitted more kg of CO_{2} than Giorgia overall.

(b) (8 points) Dylan and Giorgia want to figure out exactly when Simpson's paradox occurs for their data. Suppose that 0.2 proportion of Dylan's food was bean foods. What range of proportions for Giorgia's bean food would cause Simpson's paradox to occur?
Show your work in the space below, then write your final answer in the blanks at the bottom of the page. Your final answers should be between 0 and 1. Leave your answers as simplified fractions.

Between \qquad and \qquad .
\qquad

Question 3 20 points
The donkeys table contains data from a research study about donkey health. The researchers measured the attributes of 544 donkeys. The next day, they selected 30 donkeys to reweigh. The first few rows of donkeys table are shown below (left), and the table contains the following columns (right):

	id	BCS	Age	Weight	WeightAlt
$\mathbf{0}$	d 01	3.0	<2	77	NaN
$\mathbf{1}$	d 02	2.5	<2	100	NaN
$\mathbf{2}$	d 03	1.5	<2	74	NaN

$$
\begin{aligned}
& \text { id } \begin{array}{l}
\text { A unique identifier for each donkey (d01, d02, } \\
\text { etc.). }
\end{array} \\
& \text { BCS } \begin{array}{l}
\text { Body condition score: from 1 (emaciated) to } 3 \\
\text { (healthy) to } 5 \text { (obese) in increments of } 0.5 .
\end{array} \\
& \text { Age } \begin{array}{l}
\text { Age in years: }<2,2-5,5-10,10-15,15-20, \text { and } \\
\text { over 20 years. }
\end{array} \\
& \text { Weight } \begin{array}{l}
\text { Weight in kilograms. }
\end{array} \\
& \text { WeightAlt } \begin{array}{l}
\text { Second weight measurement taken for } 30 \text { don- } \\
\text { keys. NaN if the donkey was not reweighed. }
\end{array}
\end{aligned}
$$

(a) (10 points) What is the feature type of each column in donkeys?

id:	\bigcirc Discrete continuous	\bigcirc Continuous	\bigcirc Ordinal	\bigcirc Nominal
BCS:	\bigcirc Discrete continuous	\bigcirc Continuous	\bigcirc Ordinal	\bigcirc Nominal
Age:	\bigcirc Discrete continuous	\bigcirc Continuous	\bigcirc Ordinal	\bigcirc Nominal
Weight:	\bigcirc Discrete continuous	\bigcirc Continuous	\bigcirc Ordinal	\bigcirc Nominal
WeightAlt:	\bigcirc Discrete continuous	\bigcirc Continuous	\bigcirc Ordinal	\bigcirc Nominal

(b) (10 points) Consider the following scenarios for how the researchers chose the 30 donkeys to reweigh. Select the correct missingness mechanism for the WeightAlt column in each scenario ${ }^{1}$.

The researchers chose the 30 donkeys with the largest Weight values to reweigh. NMAR \bigcirc MAR MCAR

The researchers drew 30 donkeys uniformly at random without replacement from the donkeys with BCS scores of 4 or greater.

The researchers set i as a number drawn uniformly at random between $0 \bigcirc$ NMAR \bigcirc MAR \bigcirc MCAR and 514, then reweighed the donkeys in donkeys.iloc[i:i+30].

The researchers reweighed all the donkeys, but deleted all the values in WeightAlt except for \bigcirc NMAR \bigcirc MAR \bigcirc MCAR the 30 lowest values.

The researchers split up the donkeys into the 6 different age groups, then sampled 5 donkeys uniformly at random without replacement within each age group.

[^0]Name: \qquad

Question 4 40 points
In this question, we will continue to work with the donkeys dataset from Question 3. The first few rows of the table and column descriptions are shown below for convenience.

	id	BCS	Age	Weight	WeightAlt
$\mathbf{0}$	d 01	3.0	<2	77	NaN
$\mathbf{1}$	d 02	2.5	<2	100	NaN
$\mathbf{2}$	d 03	1.5	<2	74	NaN

$$
\begin{aligned}
& \text { id } \begin{array}{l}
\text { A unique identifier for each donkey (d01, d02, } \\
\text { etc.). }
\end{array} \\
& \text { BCS } \begin{array}{l}
\text { Body condition score: from 1 (emaciated) to 3 } \\
\text { (healthy) to 5 (obese) in increments of 0.5. }
\end{array} \\
& \text { Age } \text { Age in years: <2, 2-5,5-10, 10-15, 15-20, and } \\
& \text { Weight } \begin{array}{l}
\text { Oer 20 years. }
\end{array} \\
& \text { Weight in kilograms. } \\
& \text { WeightAlt } \begin{array}{l}
\text { Second weight measurement taken for 30 don- } \\
\text { keys. NaN if the donkey was not reweighed. }
\end{array}
\end{aligned}
$$

For this question, assume that the researchers chose the 30 donkeys to reweigh by drawing a simple random sample of 30 underweight donkeys: donkeys with BCS values of $1,1.5$, or 2 . The researchers weighed these 30 donkeys one day later and stored the results in the WeightAlt column.
(a) (3 points) Which of the following shows the scatter plot of WeightAlt - Weight on the y-axis and Weight on the x -axis? Assume that missing values are not plotted.
\square

(b) (4 points) Suppose we use mean imputation to fill in the missing values in WeightAlt. Select the scatter plot of WeightAlt on Weight after imputation.

(c) (12 points) Alan wants to see whether donkeys with BCS >= 3 have larger Weight values on average compared to donkeys that with BCS <3. Select all the possible test statistics that Alan could use to conduct this hypothesis test. Let μ_{1} be the mean weight of donkeys with BCS >= 3 and μ_{2} be the mean weight of donkeys with BCS < 3 .$\mu_{1}$$\mu_{1}-\mu_{2}$$2 \mu_{2}-\mu_{1}$$\left|\mu_{1}-\mu_{2}\right|$Total variation distanceKolmogorov-Smirnov test statistic
(d) (4 points) To generate a single sample under his null hypothesis, Alan should:

O Resample 744 donkeys with replacement from donkeys.
O Resample 372 donkeys with replacement from donkeys with BCS < 3, and another 372 donkeys with BCS >= 3 .
\bigcirc Randomly permute the Weight column.

Name:
(e) (17 points) Doris wants to use multiple imputation to fill in the missing values in WeightAlt. She knows that WeightAlt is MAR conditional on BCS and Age, so she will perform multiple imputation conditional on BCS and Age - each missing value will be filled in with values from a random WeightAlt value from a donkey with the same BCS and Age. Assume that all BCS and Age combinations have observed WeightAlt values.

Fill in the blanks in the code below to estimate the median of WeightAlt using multiple imputation conditional on BCS and Age with 100 repetitions. A function impute is also partially filled in for you, and you should use it in your answer.

```
def impute(col):
    col = col.copy()
    n =
```

\qquad

```
    fill = np.random.choice(
    col[___] = fill
    return col
results = []
for i in range(___):
    imputed = (donkeys
```

\qquad

```
    ['WeightAlt']
    .__(___)
    )
    results.append(imputed.median())
```

Name:

Question 5................... 0 points Optional: Draw a Picture About UCSD Data Science (or use this page for scratch work)

[^0]: ${ }^{1}$ Although the missing data are missing by design from the perspective of the original researchers, since we can't directly recover the missing values from our other data, we can treat the missing data as NMAR, MAR, or MCAR.

