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Discussion 4 Solutions
Note: Starting this week, Iʼm going to release solutions as an answer document instead 
of the filled worksheet to have space to explain everything, but just FYI all of the 
following is from practice.dsc80.com — the purpose of this is just so you donʼt have to 
cross-reference anything yourself!

FA23 Midterm Problem 3

Problem
A. The researchers chose the 30 donkeys with the largest 'Weight'  values to reweigh.

B. The researchers drew 30 donkeys uniformly at random without replacement from the 
donkeys with BCS  score of 4 or greater.

C. The researchers set i  as a number drawn uniformly at random between 0 and 514, 
then reweighed the donkeys in donkeys.iloc[i:i+30] .

D. The researchers reweighed all the donkeys, but deleted all the values in 'WeightAlt'  
except for the 30 lowest values.

E. The researchers split up the donkeys into the 6 different age groups, then sampled 5 
donkeys uniformly at random without replacement within each age group.

Solution
A. Missing at random. This means missing values depend on another column in the 
DataFrame. In this case, the missing values of 'WeightAlt'  depend on the 'Weight'  
column since we select the 30 largest.

B. Missing at random. This means missing values depend on another column in the 
DataFrame. In this case, the missing values of 'WeightAlt'  depend on the 'BCS'  column 
since we choose from those with a score of 4 or greater.

C. Missing completely at random or, possibly, Missing at Random. The argument for 
MAR is as follows: this means missing values depend on another column in the 
DataFrame. The missing values depend on the index since index 0 can only be selected 
if i = 0 , but index 29 could be chosen if i  is any value between 0 and 29, so it has a 
higher probability of being chosen. The original solution was MCAR as we did not 
account for edge case of i  being small, but it is technically MAR. Credit was given for 
either answer.
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D. Not missing at random. This means missing values depend on the column theyʼre 
missing from. The missing values here are all values that are not the 30 lowest in 
'Weight' , and so they depend on the column itself.

E. Missing completely at random or Missing at random. If the data was assumed to be 
evenly distributed, then the data is missing completely at random since the six age 
groups would all be chosen from uniformly. However, if the data was assumed to 
possibly have skewed age data, then samples from small sample size age groups had a 
higher probability of being chosen than those of large sample size age group. Credit 
was given for either answer.

NOTE Despite the fact that we accepted multiple answers for a couple of these, you 
should make as few assumptions about the data as possible to get your solutions — but 
if youʼre unsure, feel free to ask!

Problem
For this next question, assume that the researchers chose the 30 donkeys to reweigh by 
drawing a simple random sample of 30 underweight donkeys: donkeys with BCS values of 
1, 1.5, or 2. The
researchers weighed these 30 donkeys one day later and stored the results in ʼWeightAlt .̓ 
Which of the following shows the scatter plot of ʼWeightAltʼ - ʼWeightʼ on the y-axis and 
ʼWeightʼ on
the x-axis? Assume that missing values are not plotted.

Solution
We are measuring the difference in weight from just one day on the y-axis, which means we 
canʼt expect any noticeable pattern of weight gain or loss no matter the original weight of 
the donkey. Therefore, a random scatterplot makes sense. Options A through C all suggest 
that the single-day weight change correlates with the starting weight, which is not a good 
assumption.

Problem
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Suppose we use mean imputation to fill in the missing values in 'WeightAlt' . Select the 
scatter plot 'WeightAlt'  on 'Weight'  after imputation.

Solution
Note we are now plotting 'Weight'  on the y-axis, not the difference of 'WeightAlt' - 'Weight' . 
Therefore, it makes sense that we would have 30 data points with a positive slope as the 
initial weight and re-weight are likely very similar.

Then, mean imputation is the process of filling in missing values with the average of the 
non-missing values. Therefore, all missing values will be the same, and should be at the 
center of the sloped line since the line is roughly evenly distributed.

FA23 Final Problem 3
The bus  table (left) records bus arrivals over 1 day for all the bus stops within a 2 mile 
radius of UCSD. The data dictionary (right) describes each column.

For each of the following questions, select the correct procedure to simulate a single 
sample under the null hypothesis, and the correct test statistic for the hypothesis test. 
Assume that the time  column of the bus DataFrame has already been parsed into 
timestamps.

Problem
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Are buses equally likely to be early or late? Note: while the problem says there is only one 
solution, post-exam two options for the test statistic were given credit. Pick one of the two.

Simulation procedure:

A. np.random.choice([-1, 1], bus.shape[0])

B. np.random.choice(bus['late'], bus.shape[0], replace = True)

C. Randomly permute the 'late'  column

Test statistic:

A. Number of values below 00

B. np.mean

C. np.std

D. TVD

E. KS statistic

Solution
Simulation procedure The sample we have here is something like 152 early buses, 125 late 
buses (these numbers are made up – in practice, these two numbers need to add to 
bus.shape[0] ). The question is whether this sample looks like it was drawn from a population 
that is 5050 (an equal number of early and late buses), which makes this a hypothesis test. 
In terms of examples from class, this most closely resembles the very first hypothesis 
testing example we looked at – the “coin flippingˮ example.

np.random.choice([-1, 1], bus.shape[0])  will return an array of length bus.shape[0] , where each 
element is equally likely to be either -1  (late) or 1  (early). (Note that we could also take -1  
to mean early and 1  to mean late – it doesnʼt really matter.)

Test statistic Each time we simulate an arrays of -1 s and 1 s, weʼd like to compute a 
statistic
that helps us differentiate between the number of late (
-1 ) and the number of early ( 1 ) simulated buses. The number of values below 0 will give 
us the number of late simulated buses, so we could use that. The mean of the -1 s and 1 s 
will give us a value that is negative if there were more late buses and positive if there were 
more early buses, so we could use that too.

NOTE this problem accepted np.mean for the test statistic, but I am pretty confident that 
this wonʼt work with some pretty simple assumptions about the data, and Iʼll see about 
getting that fixed

Problem
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Is the 'late'  column MAR dependent on the 'line'  column?

Simulation procedure:

np.random.choice([-1, 1], bus.shape[0])

np.random.choice(bus['late'], bus.shape[0], replace = True)

Randomly permute the 'late'  column

Test statistic:

Absolute difference in means

Absolute difference in proportions

TVD

KS statistic

Solution
Answer Simulation procedure: Randomly permute the 'late'  column; Test statistic: TVD

Simulation procedure To determine if 'late'  is missing at random dependent on the 
'line'  column, we conduct a permutation test and compare 1 the distribution of the 
'line'  column when the 'late'  column is missing to 2 the distribution of the 'line'  
column when the 'late'  column is not missing to see whether theyʼre significantly different. 
If the distributions are indeed significantly different, then it is likely that the 'late'  column is 
MAR dependent on 'line' .

Test statistic Since we are comparing the distributions of categorical data ( 'line'  is 
categorical) for our permutation test, Total Variation Distance is the best test statistic to 
use.
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Discussion 5 Solutions
NOTE All of these solutions are available on practice.dsc80.com — this is just so you can 
see everything on one place.

FA23 Midterm Problem 4

Problem
To generate a single sample under his null hypothesis, Alan should

A. Resample 744 donkeys with replacement from donkeys . 

B. Resample 372 donkeys with replacement from donkeys  with 'BCS'   3, and another 372 
donkeys with 'BCS'   3. 

C. Randomly permute the 'Weight'  column.

Solution
Answer: C

The null hypothesis is “Donkeys with 'BCS'   3 have the same 'Weight'  values on average 
compared to donkeys that have 'BCS'   3 .ˮ Under the null hypothesis, we should have similar 
results with a shuffled dataset.

Options A and B shuffle with replacement (bootstrapping), while option C shuffles without 
replacement (permutation is done without replacement). Bootstrapping is generally used to 
estimate confidence intervals, while permutation tests are a kind of hypothesis test. In this case, 
we are performing a hypothesis test, so we want to permute the 
'Weight'  column.

Problem
Doris wants to use multiple imputation to fill in the missing values in 'WeightAlt' . She knows that 
'WeightAlt'  is MAR conditional on 'BCS'  and 'Age' , so she will perform multiple imputation 
conditional on 'BCS'  and 'Age'  - each missing value will be filled in with values
from a random
'WeightAlt'  value from a donkey with the same 'BCS'  and 'Age' . Assume that all 'BCS'  and 
'Age'  combinations have observed WeightAlt  values. Fill in the blanks in the code below to 
estimate the median of 'WeightAlt'  using multiple imputation conditional on 'BCS'  and 'Age'  with 
100 repetitions. A function impute  is also partially filled in for you, and you should use it in your 
answer.
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Solution

def impute(col):

    col = col.copy()

    n = col.isna().sum()

    fill = np.random.choice(col.dropna(), n)

    col[col.isna()] = fill

    return col

results = []

for i in range(100):

    imputed = (donkeys.groupby(['BCS', 'Age'])['WeightAlt'].transform(impu

    results.append(imputed.median())

We start with the bottom five blanks as we are not sure what the parameter of impute(col)  is 
until we write the function call first. We see that we are using a loop, and seeing that we are 
doing multiple imputation with 100 reputations, we can fill in range(100) . We then define the
variable 
imputed , which we can see from the last line of code that calls imputed.median()  should be a list of 
'WeightAlt'  that has imputed values. Since we want to make
our imputation conditional on 
'BCS'  and 'Age' , we can fill in the next blank with a groupby  method and pass in the list of 
columns we want - ['BCS', 'Age'] . We can see we have then selected the 'WeightAlt'  column in 
the problem, and so we need to use our impute  function on that series. We can do so with a 
transform  method and then pass in impute . Note this can also be done with apply  and receive 
credit, but this is our solution.

Now, we can define the impute  function to impute missing values from col . Since we have 
already aggregated on ['BCS', 'Age'] , we know that our given col  has samples all of the same 
'BCS'  and 'Age' values. Therefore, to impute as defined in the question, we just need to fill in 
NaN  values with any other value from col , chosen at random. We can see we will use

np.random.choice , which takes in its first parameter possible choices in a list, and in its second 
parameter the number of choices to make. The number of choices to make we can define as n , 
which is the number of NaN  values. This is found with col.isna().sum() . Then our possible 
choices are any non- NaN  values in col , which we can use col.dropna()  to find. Finally, we fill in 
the NaN  values in col  by masking for the NaN  indices with col[col.isna()] , and set it equal to our 
fill  values. That will successfully impute values into our col  and we can then return it.

WI23 Final Problem 1

Problem
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The DataFrame sat  contains one row for most combinations of "Year"  and "State" , where 
"Year"  ranges between 2005  and 2015  and "State"  is one of the 50 states (not including the 
District of Columbia).

The other columns are as follows:

"# Students"  contains the number of students who took the SAT in that state in that year.

"Math"  contains the mean math section score among all students who took the SAT in that 
state in that year. This ranges from 200 to 800.

"Verbal"  contains the mean verbal section score among all students who took the SAT in 
that state in that year. This ranges from 200 to 800. This is now known as the “Critical 
Readingˮ section.)

The first few rows of sat  are shown below (though sat  has many more rows than are pictured 
here).

The data description stated that there is one row in sat for most combinations of "Year"  
(between 2005 and 2015 , inclusive) and "State" . This means that for most states, there are 11 
rows in sat  — one for each year between 2005 and 2015, inclusive.

It turns out that there are 11 rows in sat  for all 50 states, except for one state. Fill in the blanks 
below so that missing_years  evaluates to an array, sorted in any order, containing the years for 
which that one state does not appear in sat .

Solution
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state_only = sat.groupby("State").filter(lambda df: df.shape[0] < 11)

merged = sat["Year"].value_counts().to_frame().merge(

    state_only, left_index=True, right_on='Year', how='left'

) # an outer merge also works!

missing_years = merged[merged['# Students'].isna()]['Year'].to_numpy()

Blank A

The initial step (in the state_only  variable) involves identifying the state that has fewer than 11 
records in the dataset. This is achieved by the lambda function lambda df: df.shape[0] < 11 , 
leaving us with records from only the state that has missing data for certain years.

Blank B

Next, applying .value_counts()  to sat["Year"]  produces a Series that enumerates the total 
occurrences of each year from 2005 to 2015. Converting this Series to a DataFrame with 
.to_frame() , we then merge it with the state_only  DataFrame. This merging results in a 
DataFrame (merged) where the years lacking corresponding entries in state_only  are marked as 
NaN.

Blank C

Finally, the expression merged[merged['# Students'].isna()]['Year']  in missing_years  identifies the 
specific years that are absent for the one state in the sat dataset. This is determined by 
selecting years in the merged DataFrame where the "# Students"  column has NaN values, 
indicating missing data for those years.

Problem
The following DataFrame contains summary statistics for all SAT takers in New York and Texas 
from 2005 to 2015. Suppose we want to run a statistical test to assess whether the distributions 
of the number of students between 2005 and 2015 in New York and Texas are significantly 
different.
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Given the information in the above DataFrame, which test statistic is most likely to yield a 
significant difference?

 

 

 

The Kolmogorov-Smirnov statistic

Solution
Answer:  The Kolmogorov-Smirnov statistic

Here, the means and medians of the two samples are similar, so their observed difference in 
means and observed difference in medians are both small. This means that a permutation test 
using either one of those as a test statistic will likely fail to yield a significant difference.
However, the standard deviations of both distributions are quite different, which means the 
shapes of the distributions are quite different. The Kolmogorov-Smirnov statistic measures the 
distance between two distributions by considering their entire shape, and since these 
distributions have very different shapes, they will likely have a larger Kolmogorov-Smirnov 
statistic than expected under the null.

mean number of  students in Texas  −  mean number of  students in New Y ork

∣ mean number of  students in Texas  −  mean number of  students in New Y ork ∣

∣ median number of  students in Texas  −
 median number of  students in New Y ork ∣


