Lecture 19 – Review, Conclusion DSC 80, Winter 2024

- Project 4 is due on Thursday, March 21st.
 - No slip days allowed!

Announcements

- The Final Exam is on Tuesday, March 19th from 3-6PM in Pepper Canyon Hall 109 (the same room as lecture).
 - Practice by working through old exams at <u>practice.dsc80.com</u>. The Spring 2023 Final Exam was recently added.
 - \circ \quad You can bring two double-sided notes sheets that you handwrite.
 - A logistics post on Ed and **assigned seats** are coming soon.
- If at least 80% of the class fills out both <u>SETs</u> and the DSC 80-specific <u>End-of-Quarter Survey</u> by Saturday at 8AM, then the entire class will have 1% of extra credit added to their overall grade. We value your feedback!
 - \circ $\,$ As of this morning, the End-of-Quarter Survey had around a 57% completion rate.

Agenda

- We'll work through selected problems from past Final Exams.
- We won't write any code, since you can't run code during the exam. Instead, we'll try to think like the computer ourselves.
- These annotated slides will be posted after lecture is over, as will the solutions to the entite exam.
- Try the problems with us!
- Towards the end, I'll share some parting thoughts, too.

Spring 2022 Final Exam, Problem 10

Read the problem <u>here</u>.

Problem 10

The DataFrame new_releases contains the following information for songs that were recently released:

- "genre": the genre of the song (one of the following 5 possibilities: "Hip-Hop/Rap", "Pop", "Country", "Alternative", or "International")
- "rec_label": the record label of the artist who released the song (one of the following 4 possibilities: "EMI", "SME", "UMG", or "WMG")
- "danceability": how easy the song is to dance to, according to the Spotify API (between 0 and 1)
- "speechiness": what proportion of the song is made up of spoken words, according to the Spotify API (between 0 and 1)
- "first_month": the number of total streams the song had on Spotify in the first month it was released

The first few rows of new_releases are shown below (though new_releases has many more rows than are shown below).

	genre	rec_label	danceability	speechiness	first_month
0	Hip-Hop/Rap	EMI	0.39	0.84	12019896
1	Рор	UMG	0.91	0.65	9932385
2	Рор	EMI	0.65	0.71	10923584
3	Country	SME	0.45	0.93	8107742
4	Hip-Hop/Rap	UMG	0.39	0.86	9554136

Problem 10 practice. dsc80. com

We decide to build a linear regression model that predicts "first_month" given all other information. To start, we conduct a train-test split, splitting new_releases into X_train, X_test, y_train, and y_test.

We then fit two linear models (with intercept terms) to the training data:

- Model 1 (lr_one): Uses "danceability" only.
- Model 2 (lr_two): Uses "danceability" and "speechiness" only.

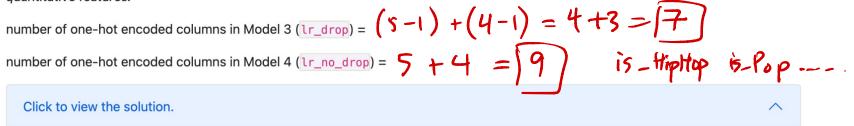
Ir_one: Problem 10.1 y=wo+w, · danceability **True or False:** If lr_one.score(X_train, y_train) is much lower than lr one.score(X test, y test), it is likely that lr one overfit to the training data. , score = R² higher = better ? training score cc testing score True False Click to view the solution. \wedge $\Xi (y_i - H(x_i))^2 = 500,000$ Problem 10.2 n = 50Consider the following outputs. >>> X_train.shape[0] $RMSE = \left(\frac{1}{n} \sum (y_i - H(x_i))^2\right)$ 50 >>> np.sum((y_train - lr_two.predict(X_train)) ** 2) = /10,000 1 - 800,000 500000 # five hundred thousand What is Model 2 (lr_two)'s training RMSE? Give your answer as an integer. 00

Click to view the solution.

Now, suppose we fit two more linear models (with intercept terms) to the training data:

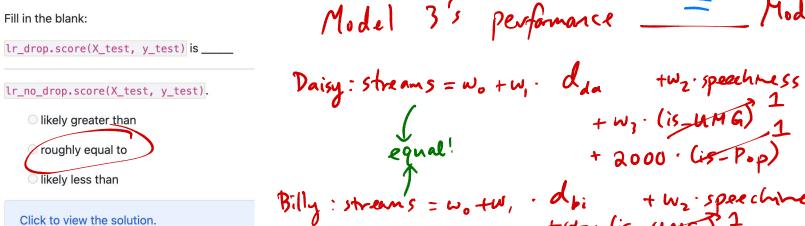
-4 possible • Model 3 (lr_drop): Uses "danceability" and "speechiness" as-is, and one-hot encodes "genre" and "rec_label", using OneHotEncoder(drop="first"). what

5 possible


• Model 4 (lr_no_drop): Uses "danceability" and "speechiness" as-is, and one-hot encodes "genre" and "rec_label", using OneHotEncoder().

Note that the only difference between Model 3 and Model 4 is the fact that Model 3 uses drop="first".

Problem 10.3


How many one-hot encoded columns are used in each model? In other words, how many binary columns are used in each model? Give both answers as integers.

Hint: Make sure to look closely at the description of new_releases at the top of the previous page, and don't include the alreadyquantitative features.

Problem 10.4

Fill in the blank:

Click to view the solution.

Problem 10.5

Recall, in Model 4 (lr_no_drop) we one-hot encoded "genre" and "rec_label", and did n OneHotEncoder.

2600

Suppose we are given the following coefficients in Model 4:

- The coefficient on "genre_Pop" is 2000.
- The coefficient on "genre_Country" is 1000.
- The coefficient on "danceability" is $10^6 = 1,000,000$.

Daisy and Billy are two artists signed to the same "rec_label" who each just released a new song with the same "speechiness". Daisy is a "Pop" artist while Billy is a "Country" artist.

Model 4 predicted that Daisy's song and Billy's song will have the same "first_month" streams. What is the absolute difference between Daisy's song's "danceability" and Billy's song's "danceability"? Give your answer as a simplified fraction.

Click to view the solution.

d not use drop="first" when instantiating our

$$-(6 \bigcirc 0) = -(0)$$

+ was speechiness

Model 4's

di: Billy's darceability

+ w7, (is_UMG) 1

+ 1000 · (15 - Country

Daisy :	streams = wo +	w, · dda tw	2. speechness	· · · · · · · · · ·	· · · · · · · · ·	• •
	equal!	+ w3 · (is + 2000 ·	-UMG) 1 (15-P.p)			
Billy : st	reans = wo tw,	d_{bi} + w + ω_7 , (is _ 4r	2 speechness TG) ¹			· · ·
		+ 1000 · (15-				· · ·
	$w_i \cdot d_{da} + w_z$ $d_{da} - w_i \cdot d$	speechness +	2000 = 40.+4	w ₁ a _{bi} two	+(000	· · ·
coef on dance ability = 10 ⁶	W, (dda - di	$b_{i} = -1000$ $\int d_{a} - d_{bi}$				· · ·
^	_		= [- (000			

Winter 2023 Final Exam, Problem 7

Read the problem <u>here</u>.

Problem 7

We decide to build a classifier that takes in a state's demographic information and predicts whether, in a given year:

- The state's mean math score was greater than its mean verbal score (1), or
- the state's mean math score was less than or equal to its mean verbal score (0).

Problem 7.1

b = 0

The simplest possible classifier we could build is one that predicts the same label (1 or 0) every time, independent of all other features. Consider the following statement:

If a > b, then the constant classifier that maximizes training accuracy predicts 1 every time; otherwise, it predicts 0 every time.

For which combination of a and b is the above statement not guaranteed to be true?

Note: Treat sat as our training set.

works convectly a = (sat['Math'] > sat['Verbal']).mean() b = 0.5Option 2: a = (sat['Math'] - sat['Verbal']).mean() b = 0as Optim same a = (sat['Math'] - sat['Verbal'] > 0).mean() b = 0.5works similarly Option 4: a = ((sat['Math'] / sat['Verbal']) > 1).mean() - 0.5

Verbal Math state 630 750 California 552 65) 445 715 options that work satisfy this cond: a>b implies at least 50%, of states have Math > Verbal

Winter 2023 Final ner, in a given year: Problem 7

> l: Math > Verbal 0: Math ≤ Verbal

Problem 7.2

Suppose we train a classifier, named Classifier 1, and it achieves an accuracy of $\frac{5}{9}$ on our training set.

Typically, root mean squared error (RMSE) is used as a performance metric for regression models, but mathematically, nothing is stopping us from using it as a performance metric for classification models as well.

What is the RMSE of Classifier 1 on our training set? Give your answer as a simplified fraction.

5/as of the time classifier's accuracy => RMSE actual=pred RMSE= n

Problem 7.3

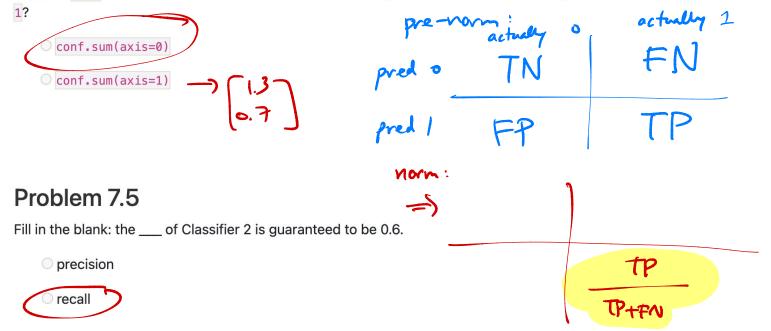
While Classifier 1's accuracy on our training set is $\frac{5}{9}$, its accuracy on our test set is $\frac{1}{4}$. Which of the following scenarios is most likely?

O Classifier 1 overfit to our training set; we need to increase its complexity.

Classifier 1 overfit to our training set; we need to decrease its complexity.

O Classifier 1 underfit to our training set; we need to increase its complexity.

O Classifier 1 underfit to our training set; we need to decrease its complexity.



For the remainder of this question, suppose we train another classifier, named Classifier 2, again on our training set. Its performance on the training set is described in the confusion matrix below. Note that the columns of the confusion matrix have been separately normalized so that each has a sum of 1.

	Actually 0	Actually 1
Predicted 0	0.9	0.4
Predicted 1	0.1	0.6

Problem 7.4

Suppose conf is the DataFrame above. Which of the following evaluates to a Series of length 2 whose only unique value is the number

A		Actually 0	Actually 1	using hint	e 0.4A
X = - A+B	Predicted 0	0.9	0.4	=) 0.91	5 0.171
4+6	Predicted 1	0.1	0.6		
$1-\alpha = \frac{15}{0+12}$				0.1B	0.6 A
Problem 7.6	<u> </u>		U	innormalized	
Suppose a fraction $lpha$ of the labels in the traini	ng set are actuall	y 1 and the	remaining 1 -	– $lpha$ are actually 0. Th	e accuracy of Classifier 2

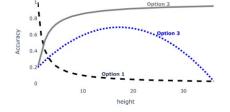
Hint: If you're unsure on how to proceed, here are some guiding questions:

is 0.65. What is the value of α ?

- Suppose the number of y-values that are actually 1 is A and that the number of y-values that are actually 0 is B. In terms of A and B_i , what is the accuracy of Classifier 2? Remember, you'll need to refer to the numbers in the confusion matrix above.
- What is the relationship between A, B, and α ? How does it simplify your calculation for the accuracy in the previous step?

pre-normitady o actually 2	acc = 0.6A + 0.9B = 0.6(A' + 0.9B)
pred o TN FN	0.6A + 0.9B + 0.1B = 0.6(A' + 0.9B)
pred 1 FP TP Norm: =) TP TP+FN	$= 0.6 \propto +0.9 (1-\alpha) = 0.65$ $= 0.6 \propto +0.9 (1-\alpha) = 0.65$ $= 0.6 \propto +0.9 - 0.9 \propto = 0.65$ $= 0.3 \propto = 0.25$

Winter 2023 Final Exam, Problem 8


Read the problem <u>here</u>.

Problem 8.1

ChickenClassifiers have many hyperparameters, one of which is height. As we increase the value of height, the model variance of the resulting ChickenClassifier also increases.


First, we consider the training and testing accuracy of a ChickenClassifier trained using various values of height. Consider the plot below.

height I, complexity I

Problem 8 Winter 2023 Final

Which of the following depicts training accuracy vs. height?

as height I complexity I, start overfitting

Which of the following depicts testing accuracy vs. height?

Option 1

Option 2

ChickenClassifiers have another hyperparameter, color, for which there are four possible values: "yellow", "brown", "red", and "orange". To find the optimal value of color, we perform k-fold cross-validation with k = 4. The results are given in the table below.

	Fold 1	Fold 2	Fold 3	Fold 4	row mean
yellow	0.56	0.59	0.39	0.76	0.575
brown	0.42	0.52	0.65	0.48	0.5175
red	0.49	0.51	0.66	0.83	0.6225
orange	0.6	0.49	0.65	0.54	0.57
column mean	0.5175	0.5275	0.5875	0.6525	

Problem 8.2

```
Which value of color has the best average validation accuracy?
```


Problem 8.3

True or False: It is possible for a hyperparameter value to have the best average validation accuracy across all folds, but not have the best validation accuracy in any one particular fold.

Problem 8.4

Now, instead of finding the best height and best color individually, we decide to perform a grid search that uses k-fold cross-validation to find the combination of height and color with the best average validation accuracy.

For the purposes of this question, assume that:

- We are performing k-fold cross validation.
- Our training set contains n rows, where n is greater than 5 and is a multiple of k.
- There are h_1 possible values of height and h_2 possible values of color.

Consider the following three subparts:

- A. What is the size of each fold?
- B. How many times is row 5 in the training set used for training?
- C. How many times is row 5 in the training set used for validation?

Choose from the following options. いろ \mathbf{k} K-1 \underline{k} num rows $\frac{n}{k}$ Ł K 2 $\overline{k} \cdot (k-1)$ $\bigcirc h_1h_2k$ B Ince Contra С $h_1h_2(k$ hz nh_1h_2 None of the above

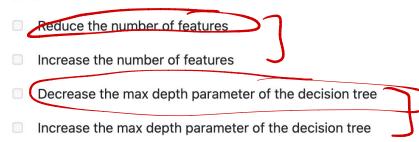
R

training

Fall 2021 Final Exam, Problem 6

Read the problem <u>here</u>.

Suppose you split a data set into a training set and a test set. You train your model on the training set and test it on the test set.


True or False: the training accuracy must be higher than the test accuracy.

True	
False	-

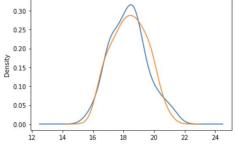
Fall	2021
	Final)

Problem 6.2

Suppose you create a 70%/30% train/test split and train a decision tree classifier. You find that the training accuracy is much higher than the test accuracy (90% vs 60%). Which of the following is likely to help significantly improve the test accuracy? Select all that apply. You may assume that the classes are balanced.

vere overfit: need to decrease complexity

Suppose you are training a decision tree classifier as part of a pipeline with PCA. You will need to choose three parameters: the number of components to use in PCA, the maximum depth of the decision tree, and the minimum number of points needed for a leaf node. You'll do this using sklearn's GridSearchCV which performs a grid search with k-fold cross validation.


Suppose you'll try 3 possibilities for the number of PCA parameters, 5 possibilities for the max depth of the tree, 10 possibilities for the number of points needed for a leaf node, and use k=5 folds for cross-validation. 3.5.10.5 = 750 k times per contration of hyperparameters

How many times will the model be trained by GridSearchCV?

Problem 6.4

◯ the VD

The plot below shows the distribution of reported gas mileage for two models of car.

What test statistic is the best choice for testing whether the two empirical distributions came from different underlying distributions?

the absolute difference in means

not categorical !

the signed difference in means

the Kolmogorov-Smirnov Statistic

Suppose 1000 people are surveyed. One of the questions asks for the person's age. Upon reviewing the results of the survey, it is discovered that some of the ages are missing – these people did not respond with their age. What is the most likely type of this missingness?

missingness likely depends in the ages then selves

Not Missing At Random

Missing Completely At Random

Missing By Design

Missing At Random

Problem 6.6

observed: 400 children 10% children 400 adults = 50% adult Consider a data set consisting of the height of 1000 people. The data set contains two columns: height, and whether o is an adult.

Suppose that some of the heights are missing. Among those whose heights are observed there are 400 adults and 400 children; among those whose height is missing, 50 are adults and 150 are children.

If the mean height is computed using only the observed data, which of the following will be true?

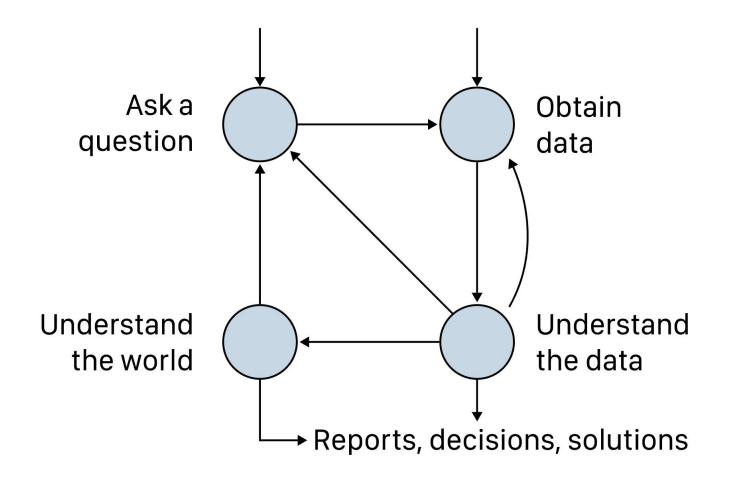
the mean will be biased low

the mean will be biased high the mean will be unbiased

069 : fewer kids, more adults

all data: 550 children = 55% children 450 adults = 45% adults

We have built two models which have the following accuracies: Model 1: Train score: 93%, Test score: 67%. Model 2: Train score: 84%, Test score: 80% Which of the following model will you choose to use to make future predictions on unseen data? You may assume that the class labels are balanced.


testing performance is higher

Problem 6.8

Suppose we retrain a decision tree model, each time increasing the max_depth parameter. As we do so, we plot the *test* error. What will we likely see?

The test error will first decrease, then increase.
The test error will first increase, then decrease.
The test error will remain unchanged.

Parting thoughts \bigcirc

In this course, you...

- Got a taste of the "life of a data scientist".
- **Practiced** translating potentially vague questions into quantitative questions about measurable observations.
- Learned to reason about 'black-box' processes (e.g. complicated models).
- **Understood** computational and statistical implications of working with data.
- Learned to use real data tools (and rely on documentation).

Now, you...

- Are **prepared** for internships and data science "take home" interviews!
- Are **ready** to create your own portfolio of personal projects.
- Have the **background** and **maturity** to succeed in the upper-division.

Topics

We covered **a lot** this quarter! You're now among the most qualified data scientists in the world.

- Week 1: From babypandas to pandas.
- Week 2: DataFrames.
- Week 3: Working with messy data, hypothesis and permutation testing.
- Week 4: Missing values.
- Week 5: HTML, Midterm Exam.
- Week 6: Web and text data.
- Week 7: Text data, modeling.
- Week 8: Feature engineering and generalization.
- Week 9: Modeling in sklearn.
- Week 10: Classifier evaluation, fairness, conclusion.
- Week 11: Final Exam.

Fall 2016

Class	Title	Un.	Gr.
CHEM 1A	General Chemistry	3	B-
CHEM 1AL	General Chemistry Laboratory	1	C+
COMPSCI 61A	The Structure and Interpretation of Computer Programs	4	B+
COMPSCI 70	Discrete Mathematics and Probability Theory	4	А
COMPSCI 195	Social Implications of Computer Technology	1	Р
MATH 1A	Calculus	4	A+

Spring 2017

Class	Title	Un.	Gr.
COMPSCI 61B	Data Structures	4	B+
COMPSCI 97	Field Study	1	Ρ
COMPSCI 197	Field Study	1	Ρ
ELENG 16A	Designing Information Devices and Systems I	4	B-
MATH 110	Linear Algebra	4	С
MATH 128A	Numerical Analysis	4	B+

Suraj's freshman year transcript.

Fall 2017				
Class	Title	Un.	Gr.	Pts.
COMPSCI 170	Efficient Algorithms and Intractable Problems	4.0	B-	10.8
COMPSCI 197	Field Study	2.0	Р	0.0
COMPSCI 375	Teaching Techniques for Computer Science	2.0	Р	0.0
COMPSCI 399	Professional Preparation: Supervised Teaching of Computer Science	1.0	Ρ	0.0
EECS 126	Probability and Random Processes	4.0	B+	13.2
ENGIN 120	Principles of Engineering Economics	3.0	B+	9.9
SSEASN R5A	Self, Representation, and Nation	4.0	A-	14.8

Spring 2018				
Class	Title	Un.	Gr.	Pts.

https://calcentral.berkeley.edu/academics/academic_summary

Page 2 c

Academic Summary CalCentral					11/12/19, 1:0	06
	COMPSCI 174	Combinatorics and Discrete Probability	4.0	в	12.0	
	COMPSCI 189	Introduction to Machine Learning	4.0	B+	13.2	
	PHYSICS 7A	Physics for Scientists and Engineers	4.0	B+	13.2	
	SASIAN R5B	India in the Writer's Eye	4.0	B-	10.8	

Suraj's sophomore year transcript.

Thank you!

- This course would not have been possible without our TA and 9 tutors: Dylan Stockard, Aritra Das, Gabriel Cha, Ethan Shapiro, Weiyue Li, Jasmine Lo, Harshi Saha, Yutian Shi, Tiffany Yu, and Diego Zavalza.
- Don't be a stranger our contact information is at <u>dsc80.com/staff</u>!
 - This quarter's course website (and podcasts) will remain online permanently at <u>dsc-courses.github.io</u>.
- Apply to be a tutor in the future! Learn more <u>here</u>.

This could be you!

Good luck on the Final Exam, and enjoy your spring break! 🌴