Lecture 2 Calculus and Aggregation

History of Data Science, Winter 2022 @ UC San Diego Suraj Rampure

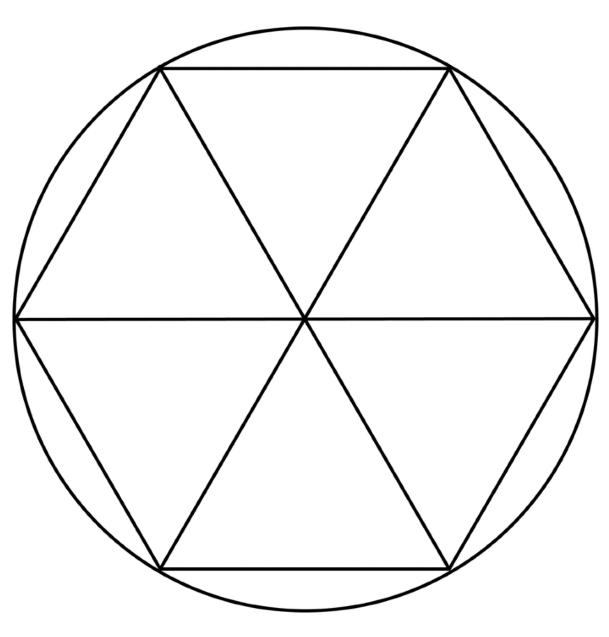
Announcements

- Moving forward: will hold office hours Monday 7:30-8:50PM AND Friday 3:30-4:30PM.
- No class next week, due to MLK Day.
- 21st at 11:59pm.

Homework 2 will be finalized tomorrow, and will be due on Friday, January

• You'll have more time to work on it, but it will be longer than Homework 1.

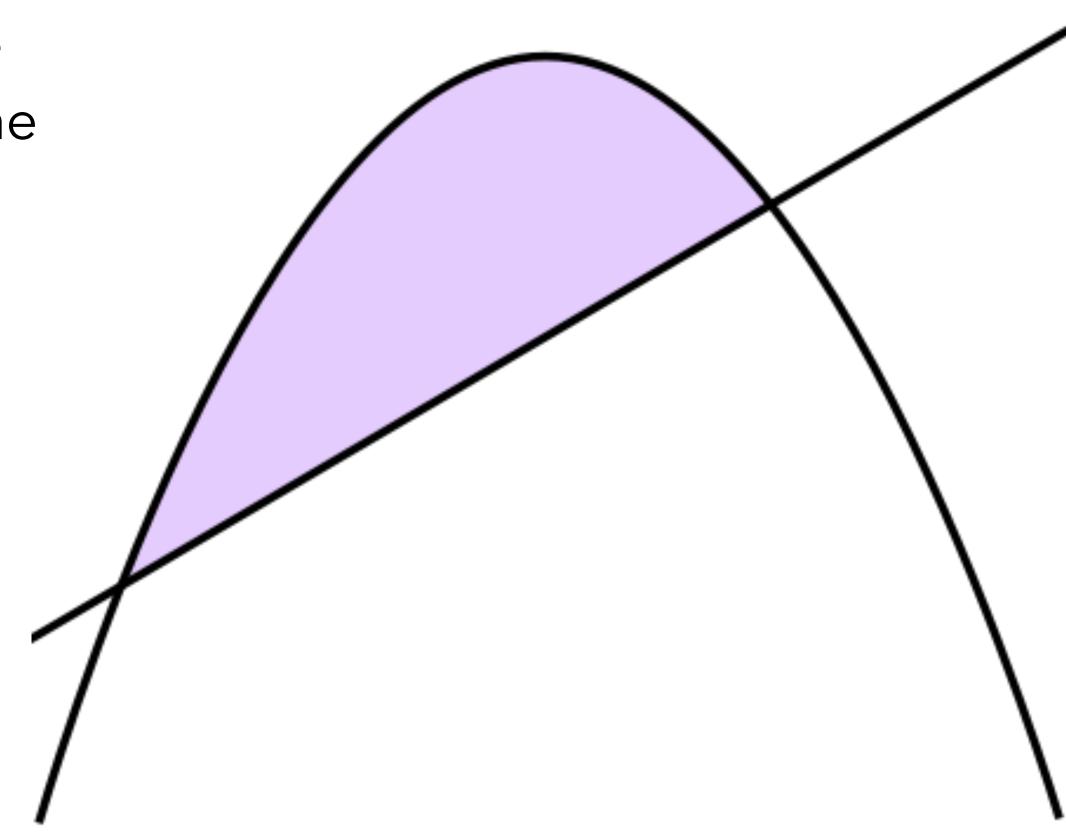
- Archimedes, continued.
- The development of calculus during the Scientific Revolution.
 - Fermat.
 - Newton.
 - Leibniz.
- Aggregation (e.g. means, medians, modes).


Archimedes, continued

Last time: approximating π

- Last time, we looked at how Archimedes used the method of exhaustion to estimate the value of π .
- Note: the method that we used (inscribing polygons with more and more sides) can only **underestimate** the value of π .
 - In order to get an **interval** approximation of π , he also circumscribed polygons with more and more sides.

• His final estimate:
$$3\frac{1}{7} < \pi < 3\frac{10}{71}$$
.


Quadrature of the parabola

- In Quadrature of the Parabola, Archimedes also used the **method of exhaustion** to show that the area of a parabolic section is equal to $\frac{4}{3}$ times the area of a **particular triangle**.
 - The argument also uses the fact that

$$1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots = \frac{4}{3}$$

- This is an **infinite geometric series**.
- This argument also was a logical precursor to integral calculus.

Let's verify this result ourselves for the parabola $y = -(x - 4)^2 + 9$ and the x-axis.

- Archimedes is also responsible for a variety of other results.
 - The volume of a sphere is $\frac{4}{3}\pi r^3$, and the surface area of a sphere is $4\pi r^2$.
- integration.

• Most of the results we've discussed so far involve **areas**, which are tied to

 In calculus, you're first taught differentiation and then taught integration, however this is not really the order in which these ideas were developed!

The Scientific Revolution

The Scientific Revolution

- The Scientific Revolution, which roughly took place from 1550 to 1700, was a period of significant scientific development in Europe¹.
- Copernicus played a key role in establishing the heliocentric model of the Solar System, over the well-established geocentric model.
- Kepler established his three laws of planetary motion, using data collected by Tycho Brahe.
- Galileo used a telescope to discover that the Moon's surface isn't smooth, and that Jupiter has as least 4 moons orbiting it.
- Newton, in addition to helping establish calculus, developed his more general laws of motion. • The **Royal Society** was established in London in 1660.

1: <u>https://www.britannica.com/science/Scientific-Revolution</u>

https://health.ucsd.edu > news > releases > pages > 2012...

UC San Diego Professor Named to the Prestigious Royal ...

Apr 25, 2012 — Founded in 1660, Royal Society Fellows have included Isaac Newton, Charles Darwin, Ernest Rutherford, Albert Einstein, Dorothy Hodgkin, Francis ...

https://jacobsschool.ucsd.edu > news > release Engineering Professor Elected to Royal Society

Paul Linden, a professor in UC San Diego's Jacobs School of Engineering, has been elected as a fellow to the United Kingdom's National Academy of Science in ...

https://library.ucsd.edu > object

Margaret Burbidge elected a Fellow of the Royal Society of ...

Oct 27, 2020 — Margaret Burbidge elected a Fellow of the Royal Society of London ... University of California, San Diego--History.

Disclaimer

- We don't have enough time to cover every detail in the development of calculus, even if we just restrict ourselves to the Scientific Revolution.
 - (History of Math).
- Fermat, Newton, and Leibniz.

• There exist 4-unit upper-division courses dedicated to that, e.g. Math 163

Instead, we'll look at the work of a select few mathematicians – in particular,

Fermat

- Pierre de Fermat (1601-1665) was a French lawyer, who is responsible for several results in number theory.
 - Fermat's little theorem: if a is an integer and p is a prime number, then $a^p a$ is an integer multiple of p.
 - Fermat's Last Theorem: there are no integer solutions to $a^n + b^n = c^n$ when n > 2.
 - Also known as one of the creators of **probability**.

Hanc marginis exiguitas non caperet.

"A cube into two cubes, a fourth power into two fourth powers, and in general to infinity, none other than square powers can be divided into two squares (literally, "two of its own name"), a fact of which I have discovered a truly remarkable proof. This margin is too small to contain it."¹

1: <u>https://www.maa.org/press/periodicals/convergence/mathematical-treasure-bachets-arithmetic-of-diophantus</u>

OBSERVATIO DOMINI PETRI DE FERMAT.

Obum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos dem nominis fas est diuidere cuius rei demonstrationem mirabilem sane detexi.

Fermat and adequality

- to find the slopes of tangent lines.

 - His method resembles the concept of a limit.

Fermat used a method called adequality to minimize/maximize functions and

• "Adequality" translates to "approximately equal". The word was first used by **Diophantus**, a Greek mathematician who lived in 200s AD in Alexandria.

Let a be an arbitrarily chosen unknown of the question (whether it has one, two, or three dimensions, as follows from the statement). We will express the maximum or minimum quantity in terms of a, by means of terms of any degree. We will then substitute a + e for the primitive unknown a, and express the maximum or minimum quantity in terms containing a and e to any degree. We will ad-equate, to speak like Diophantus,³ the two expressions of the maximum and minimum quantity, and we will remove from them the terms common to both sides. Having done this, it will be found that on both sides, all the terms will involve eor a power of e. We will divide all the terms by e, or by a higher power of e, such that on at least one of the sides, e will disappear entirely. We will then eliminate all the terms where e(or one of its powers) still exists, and we will consider the others equal, or if nothing remains on one of the sides, we will equate the added terms with the subtracted terms, which comes to be the same. Solving this last equation will give the value of a, which will lead to the maximum or the minimum, in the original expression.

1: <u>https://digitalcommons.ursinus.edu/cgi/viewcontent.cgi?article=1011&context=triumphs_calculus</u>

Maximization via adequality

- Consider the task of maximizing the function $f(x) = bx - x^2$, for some constant b. (For example, let b = 10.)
 - We can think of it as the task of finding a number x such that the product of x and 10 - x is as large as possible.
 - Observation: the product is large when xand 10 - x are close together.
 - Let *e* be some small positive number. Then...

Maximization via adequality

General idea: to find the *a* that maximizes f(x),

1.
$$\operatorname{Set} f(a) = f(a + e).$$

- 2. Divide both sides by *e*, and cancel any remaining terms involving e.
- 3. Solve for *a*.

Tangent lines via adequality

- Fermat was also able to find the slopes of tangent lines using adequality.
- Idea: use adequality to find the subtangent, t, of a curve at a point (a, f(a)).
 - *t* is defined as the distance between a and the x-intercept of the tangent line of f at a.
- How? Similar triangles.

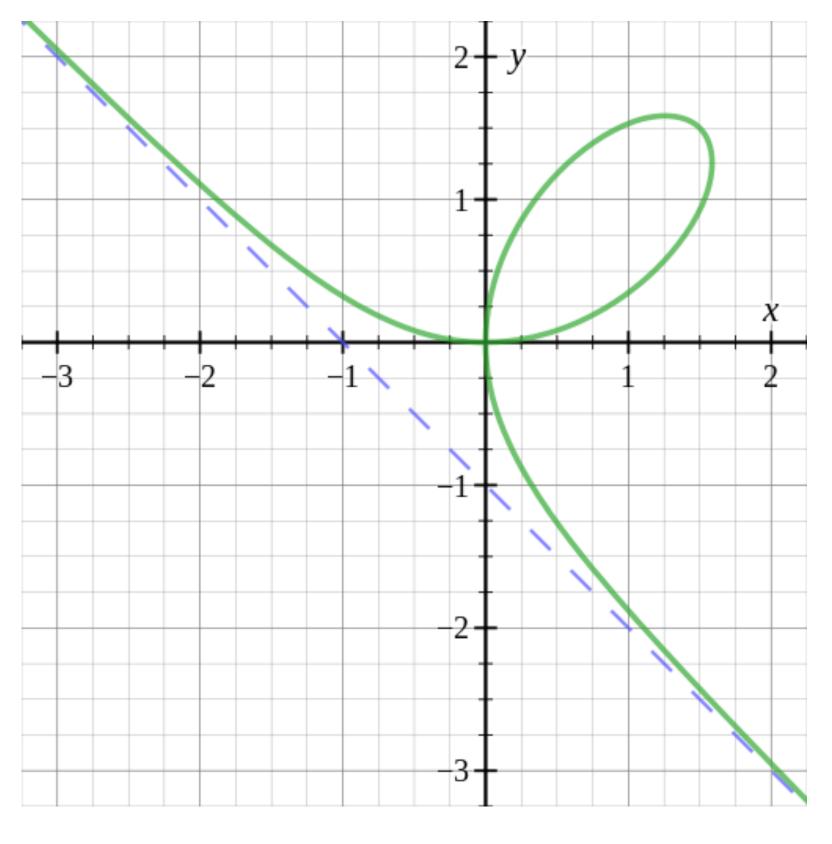
Tangent lines via adequality

General idea: to find the slope of f(x) at point a,

1. Set
$$\frac{f(a)}{t} = \frac{f(a+e)}{t+e}$$
.

- 2. Divide both sides by *e*, and cancel any remaining terms involving e.
- 3. Solve for *t*.
- 4. The slope of the tangent line is then $\frac{f(a)}{f(a)}$.

Folium of Descartes


- as the founder of modern philosophy.
 - Also known for the Cartesian plane.
- tangents to curves, using **normals**.
- relationship $x^3 + y^3 3xy = 0$, known as the Folium of Descartes.

René Descartes is a famous mathematician in his own right, and is also known

Around the same time as Fermat, he developed his own method of finding

 Fermat told Descartes about his subtangent technique, and Descartes was skeptical. Descartes challenged Fermat to find the tangent line to the implicit

Folium of Descartes

Fermat was able to find the tangent line easily, with a small modification to his approach.

 $x^3 + y^3 - 3xy = 0$

Fermat and integration

- Fermat was also able to find the areas under some curves.
- he not credited with the discovery of calculus?

• For instance, he proved that the area under $y = x^2$ between x = 0 and x = a is $\frac{a^3}{2}$.

• In other words, he showed that $\int_{0}^{a} x^{2} = \frac{a^{3}}{3}$ (not with this notation, though).

• Fermat, then, developed methods for both finding slopes and finding areas. Why is

• Answer: he didn't find (or document) any connection between areas and slopes.

Newton and Leibniz

Newton

- Isaac Newton (1642-1727) was an English mathematician and physicist. He is credited with discovering:
 - Newton's 3 laws of motion and the law of universal gravitation.
 - The fact that light is made up of a seven color rainbow
 - The binomial theorem.
 - Calculus*.
- He went to Cambridge University, and supposedly produced some of his best work while school was cancelled due to "The Great Plague of London" in 1665.

Fluents and fluxions

- Newton worked under Isaac Barrow, another English mathematician.
 - (supposedly) proved it on his own later.
- In 1665, Newton wrote notes on "fluxions", but did not publish them until in the 1700s.
 - of change of a quantity a given moment in time.
 - If x is a fluent, \dot{x} represents the corresponding fluxion.
- the problem of finding a fluent given a fluxion (integration).

Barrow was the first to publish the fundamental theorem of calculus, though Newton

• A fluent is a quantity whose value changes with time, and a fluxion is the **instantaneous** rate

In his notes, he posed both the problem of finding a fluxion given a fluent (differentiation) and

 $[1, 2, \S{2}]$

no.

GIVEN THE RELATION OF THE FLOWING QUANTITIES TO ONE ANOTHER, TO DETERMINE THE RELATION OF THE FLUXIONS.

Arrange the equation by which the given relation is expressed according to the dimensions of some fluent quantity, say x, and multiply its terms by any arithmetical progression and then by \dot{x}/x . Carry out this operation separately for each one of the fluent quantities and then put the sum of all the products equal to nothing, and you have the desired equation.(87) EXAMPLE 1. If the relation of the quantities x and y be $x^3 - ax^2 + axy - y^3 = 0$, I multiply the terms arranged first according to x and then to y in this way.

Multiply	x^3	$-ax^2+ax^2$
by	$\frac{3\dot{x}}{x}$	$\frac{2\dot{x}}{x}$.
there comes	$3\dot{x}x^{2}$ -	$-2\dot{x}ax+\dot{x}a$

And the sum of the products is $3\dot{x}x^2 - 2a\dot{x}x + a\dot{x}y - 3\dot{y}y^2 + a\dot{y}x = 0$, an equation these determined it will be $\dot{x}:\dot{y} = (3y^2 - ax):(3x^2 - 2ax + ay).$

PROBLEM 1

SOLUTION

which gives the relation between the fluxions \dot{x} and \dot{y} . Precisely, should you assume x arbitrarily the equation $x^3 - ax^2 + axy - y^3 = 0$ will give y, and with

75

Leibniz

Gottfried Wilhelm Leibniz (1646-1716) was a German polymath.

- Leibniz a mathematician, philosopher, and politician, and was educated as a lawyer.
- He is credited with developing the binary number system.
- Independently from Newton, Leibniz developed the field of calculus.
 - He published his results in 1684, before Newton did, even though Newton supposedly developed the theory of fluents and fluxions first. This sparked the "priority dispute."

Notation

- The modern notation we use in calculus largely comes from Leibniz, who was much more deliberate with the notation he used.
 - To Leibniz, dx represented an infinitesimally small change in x.
 - The integral symbol, , came from stretching out an s, for "sum".
- Newton's notation is occasionally used in physics.
- The "prime" notation, e.g. f'(x), was only developed by Euler, many years later.
 - Euler was the first to establish the notion of a function, as well.

Further development

- The development of calculus didn't stop with Newton and Leibniz.
 - George Berkeley, a philosopher (who the California city and university is named after), questioned the idea of fluxions and called them "the ghost of departed quantities".
 - Cauchy and Weierstrass developed the theory of limits well after both Newton and Leibniz died.
 - Riemann, who created the Riemann sum that the modern formal definition of an integral is based on, was only born in 1826.

Aggregation

Mean, median, and mode

- number.
 - Mean: Add up all the numbers and divide by the number of numbers.
 - Median: Sort the numbers and pick the middle one.
 - **Mode**: Pick the most common number.
- While the idea of summarizing data using a single number is common now, it wasn't always so ubiquitous.

• We're often interested in **summarizing** a set of numbers using just a single

Pythagorean means

- fact, they are known for establishing three types of means.
- until much, much later.

The concept of the "arithmetic mean" was known to the Pythagoreans – in

However, those means were not used for the purposes of summarizing data

Pythagorean means

"There are three 'means' in music: one is the arithmetic, the second is the geometric, and the third is the subcontrary, which they call 'harmonic'. The arithmetic mean is when there are three terms showing successively the same excess: the second exceeds the third by the same amount as the first exceeds the second. In this proportion, the ratio of the larger numbers is less, that of the smaller numbers greater. The geometric mean is when the second is to the third as the first is to the second; in this, the greater numbers have the same ratio as the smaller numbers. The subcontrary, which we call harmonic, is as follows: by whatever part of itself the first term exceeds the second, the middle term exceeds the third by the same part of the third. In this proportion, the ratio of the larger numbers is larger, and of the lower numbers less." – Archytas (member of the Pythagorean school of thought)¹

1. <u>http://www.cs.uni.edu/~campbell/stat/pyth.html</u>

Accounts of Thucydides

- Thucydides (~400 BC) was an early historian of science, and provided accounts of how the Greeks used methods of aggregation in times of war.
 - One example: In order to construct a ladder to reach the top of an enemy's wall, they needed to estimate the height of the wall. To do this, they would have many different people count the number of bricks in the wall, and hoped that the majority would answer correctly.

What method does this resemble?

Summary, next time

Summary

- slopes and areas.
 - Newton thought in terms of "fluents and fluxions".
 - Leibniz established the notation we use today.
- for summarizing data until relatively recently.
- **Next time:** more on the history of the mean, least squares, and regression.

• Fermat developed techniques for finding the area under certain curves, finding tangent lines, and for maximizing/minimizing functions, but he did not develop a unifying theory of calculus.

Newton and Leibniz independently developed the field of calculus, unifying the ideas of

• The "mean" as a mathematical operation was known to the Pythagoreans, but it was not used