Lecture 3 **Aggregation and Least Squares**

History of Data Science, Winter 2022 @ UC San Diego Suraj Rampure

Announcements

- Moving forward: will hold office hours Monday 7:30-8PM AND Friday 3:30-4:30PM.
- 30th at 11:59PM.
 - Remember that you get one "homework drop".

- Homework 1 "grades" were released, along with solutions

Format stang next week: hybrid

Homework 3 will be released by tomorrow, and will be due Sunday, January

- Pythagorean means.
- Tycho Brahe's use of the mean.
 context regading near and least squares Boscovich's method.
- Legendre and least squares. ~ untime this next the

- fact, they are known for establishing three types of means.
- much, much later.

The concept of the "arithmetic mean" was known to the Pythagoreans – in

 However, means were not used for the purposes of summarizing data until "no all

Pythagorean means

From Archytas (member of the Pythagorean school of thought)¹: "There are three 'means' in music: one is the arithmetic, the second is the geometric, and the third is the subcontrary, which they call 'harmonic'. The arithmetic mean is when there are three terms showing successively the same excess: the second exceeds the third by the same amount as the first exceeds the second. In this proportion, the ratio of the larger numbers is less, that of the smaller numbers greater."

second exceeds the third: C-b exceeds the second: a-C first

AM =

1. <u>http://www.cs.uni.edu/~campbell/stat/pyth.html</u>

men of a, b: some number a, c, b first the

a-c=c-bq+b=2c $x_1 + x_2 + \cdots + x_n$ arthratic near

Pythagorean means How are c, a, and b related in each type of mean? From Archytas (member of the Pythagorean school of thought)¹: numbers have the same ratio as the smaller numbers." second is to the third: $\frac{c}{b}$ fist is to the second: $\frac{\pi}{C}$ larger numbers is larger, and of the lower numbers less."

1. <u>http://www.cs.uni.edu/~campbell/stat/pyth.html</u>

general: $GM = (X_1 \cdot X_2 \cdot X_3 \cdot X_4 \cdot \dots \cdot X_n)$

- "The geometric mean is when the second is to the third as the first is to the second; in this, the greater

Tycho Brahe

- Recall, Tycho Brahe (1546-1601) was a Danish astronomer.¹
- He was a pioneer in measuring the positions of stars in the night sky, without the use of telescopes.
- Kepler used Brahe's data when creating his laws of planetary motion.
- He is also one of the earliest scientists documented as having used the mean to **combine observations**.²
- Also supposedly lost his nose in a fight and wore a fake nose.
- https://www.britannica.com/biography/Tycho-Brahe-Danish-astronomer
- 2. Pearson and Kendall, Studies in the History of Probability and Statistics, p122-123

Tycho Brahe's triangular sextant

Right ascension

- One of the earliest documented examples of **combining** observations is in the work of Tycho Brahe, who was measuring the **right ascension** of α Arietis (a star).
 - **Right ascension** is the celestial equivalent of **longitude** on Earth.
 - It is measured in units of **time**, relative to when a reference point (the "vernal equinox") passes overhead.
 - e.g. if an object's right ascension is 2 hours and 15 minutes, you will see it pass directly above you 2 hours and 15 minutes after the reference point does.
 - Similar to GMT-8 meaning "8 hours before Greenwich Meridian Time."

longitude stats at Greenwich (London, UK) O' of longitude

1582	February 26		26°	0'	14"
1582	March 20		26	0 3	32
1582	April 3		26	0 3	30
$1582 \\ 1585$	February 27 September 21	$26^{\circ} 4' 16'' \\ 25 56 23 $	26	0 5	20
$\begin{array}{c}1582\\1585\end{array}$	March 5 September 14	$25 56 33 \\ 26 4 43$	26	0 3	38
$\begin{array}{c}1582\\1585\end{array}$	March 5 September 15	$\left. \begin{array}{ccc} 25 & 59 & 15 \\ 26 & 1 & 21 \end{array} \right\}$	26	0 1	18
$\begin{array}{c} 1582\\ 1585 \end{array}$	March 9 September 15	$\left. \begin{array}{ccc} 25 & 59 & 49 \\ 26 & 1 & 16 \end{array} \right\}$	26	0 3	32
$\begin{array}{c} 1586\\ 1588 \end{array}$	December 26 December 15	$\left. \begin{array}{ccc} 25 & 54 & 51 \\ 26 & 6 & 32 \end{array} \right\}$	26	0 4	12
$\begin{array}{c} 1586 \\ 1588 \end{array}$	December 27 November 29	$\left. \begin{array}{ccc} 25 & 52 & 22 \\ 26 & 8 & 52 \end{array} \right\}$	26 (0 3	37
$\begin{array}{c} 1587 \\ 1588 \end{array}$	January 9 December 6	$\left. \begin{array}{ccc} 26 & 2 & 5 \\ 25 & 58 & 49 \end{array} \right\}$	26 (0 2	. 27
$1587 \\ 1588$	January 24 October 26	$\left. \begin{array}{ccc} 26 & 6 & 44 \\ 25 & 54 & 13 \end{array} \right\}$	26 (0 2	29
$1587 \\ 1588$	August 17 April 16	$\left. \begin{array}{ccc} 26 & 5 & 40 \\ 25 & 54 & 48 \end{array} \right\}$	26 (0 1	4
1587 1588	August 17 April 16	$\left. \begin{array}{ccc} 26 & 1 & 1 \\ 25 & 59 & 6 \end{array} \right\}$	26 (0	4
1587 1588	August 18 March 28	$\left. \begin{array}{ccc} 25 & 54 & 35 \\ 26 & 6 & 20 \end{array} \right\}$	26 (0 2	8
1587 1588	August 18 April 16	$25 54 49 \\ 26 6 30 $	26 0) 3	9

Source: Pearson and Kendall, Studies in the History of Probability and Statistics, p122-123

• Brahe collected several measurements for the right ascension of α Arietis from 1582-1588, with the goal of coming up with a single value.

• He selected 3 values from 1582, and 12 values from the next 6 years, each of which was the **mean** of two other observations.

• **Question:** how do we interpret these numbers and verify that he did indeed take the mean of each pair?

Aside: measuring time in degrees

- rotation of the Earth takes 24 hours).
- A circle has 360° degrees in it, so one way of describing time is as using
- This means that **15° = 1 hour**, and **1° = 4 minutes**.
- into 60 arcseconds, denoted by ".
- As an example, let's try and convert the following measurement into regular minutes:

• Right ascension is measured in time, and can vary from 0 hours to 24 hours (because one

• We can further subdivide each degree into 60 arcminutes, denoted by ', and each arc minute

82° 15′ 10″

<u>560</u> = <u>24</u> 24

degrees = $82 + 15 \cdot \frac{1}{60} + 10 \cdot \frac{1}{60^2}$

time minutes = $4 \cdot degrees = 4\left(82 + \frac{1}{4} + \frac{1}{360}\right)$

Another example:

$$10^{\circ} 52^{\prime} 3^{\prime\prime}$$

total degrees = $10 + \frac{52}{60} + \frac{3}{60^2}$
number = $4\left(10 + \frac{52}{60} + \frac{3}{60^2}\right)$

82° 15′ 10″

 $= 3287 17 \frac{4}{360}$ = $3297 + \frac{1}{7} \frac{4}{7}$ minutes

55 hours and 29 monutes

Back to Brahe's data

$1582 \\ 1582 \\ 1582$	February 26 March 20 April 3					26° 26 26	0' 0 0	44" 32 30	
$\begin{array}{c} 1582\\ 1585 \end{array}$	February 27 September 21	26° 25	4' 56	16 23	"}	26	0	20	
$\begin{array}{c} 1582 \\ 1585 \end{array}$	March 5 September 14	25 26	56 4	33 43	}	26	0	38	
$\begin{array}{c} 1582\\ 1585 \end{array}$	March 5 September 15	$25 \\ 26$	59 1	15 21	}	26	0	18	
$\begin{array}{c}1582\\1585\end{array}$	March 9 September 15	$25 \\ 26$	59 1	49 16	}	26	0	32	
$\begin{array}{c}1586\\1588\end{array}$	December 26 December 15	$25 \\ 26$	54 6	51 32	}	26	0	42	
$\begin{array}{c} 1586\\ 1588 \end{array}$	December 27 November 29	25 26	52 8	22 52	}	26	0	37	
$\begin{array}{c} 1587\\ 1588 \end{array}$	January 9 December 6	26 25	2 58	5 49	}	26	0	27 ,	
$\begin{array}{c} 1587\\ 1588 \end{array}$	January 24 October 26	26 25	6 54	44 13	}	26	0	29	
$\begin{array}{c} 1587\\ 1588 \end{array}$	August 17 April 16	$\frac{26}{25}$	5 54	40 48	}	26	0	14	
$\begin{array}{c} 1587\\ 1588 \end{array}$	August 17 April 16	$\frac{26}{25}$	1 59	1 6	}	26	0	4	
1587 1588	August 18 March 28	25 26	54 6	35 20	}	26	0	28	
1587 1588	August 18 April 16	25 26	54 6	49 30	}	26	0	39	

 Now that we know how to interpret these numbers, we can verify that the operation Brahe used on each pair was the mean.

• Strategy: to compute mean (d_1, d_2) :

• Convert d_1 and d_2 to minutes (i.e. regular) numbers) and compute their mean.

 Convert the mean back into degreesarcminutes-arcseconds.

• Let's try this in a Jupyter Notebook!

Reducing observational error

$1582 \\ 1582$	February 26 March 20				26°	0'	44″ 32	
1582	April 3				26	0	30	
$\begin{array}{c} 1582\\ 1585 \end{array}$	February 27 September 21	26° 25	4' 56	$\binom{16''}{23}$	26	0	20	
$\begin{array}{c} 1582 \\ 1585 \end{array}$	March 5 September 14	$\begin{array}{c} 25\\ 26\end{array}$	56 4	$\left. \begin{smallmatrix} 33\\43 \end{smallmatrix} \right\}$	26	0	38	
$\frac{1582}{1585}$	March 5 September 15	25 26	59 1	$\left. \begin{smallmatrix} 15\\21 \end{smallmatrix} \right\}$	26	0	18	
$\begin{array}{c}1582\\1585\end{array}$	March 9 September 15	$\frac{25}{26}$	59 1	$\left. \begin{smallmatrix} 49\\16\end{smallmatrix} \right\}$	26	0	32	
$\begin{array}{c}1586\\1588\end{array}$	December 26 December 15	25 26	54 6	$\left. \begin{smallmatrix} 51\\32 \end{smallmatrix} \right\}$	26	0	42	
$\begin{array}{c} 1586 \\ 1588 \end{array}$	December 27 November 29	$\begin{array}{c} 25\\ 26\end{array}$	52 8	$\left. \begin{array}{c} 22\\52 \end{array} \right\}$	26	0	37	
$\begin{array}{c} 1587 \\ 1588 \end{array}$	January 9 December 6	$\begin{array}{c} 26 \\ 25 \end{array}$	2 58	$\left\{ \begin{smallmatrix} 5\\49 \end{smallmatrix} \right\}$	26	0	27	,
$\begin{array}{c} 1587 \\ 1588 \end{array}$	January 24 October 26	$\begin{array}{c} 26 \\ 25 \end{array}$	6 54	$\left\{ \begin{smallmatrix} 44\\13 \end{smallmatrix} \right\}$	26	0	29	
$\begin{array}{c} 1587 \\ 1588 \end{array}$	August 17 April 16	$\begin{array}{c} 26 \\ 25 \end{array}$	5 54	$\left. \begin{smallmatrix} 40\\48 \end{smallmatrix} \right\}$	26	0	14	
$1587 \\ 1588$	August 17 April 16	$\frac{26}{25}$	1 59	$\begin{pmatrix} 1\\6 \end{pmatrix}$	26	0	4	
1587 1588	August 18 March 28	$25 \\ 26$	54 6	$\left. \begin{smallmatrix} 35\\20 \end{smallmatrix} \right\}$	26	0	28	
1587	August 18 April 16	25 26	54 6	$\frac{49}{30}$	26	0	39	

• The values in the right-most column are far less spread out than the values in the middle column.

• As such, Brahe used the mean to eliminate systematic errors.¹

1. Pearson and Kendall, Studies in the History of Probability and Statistics, p122-123

 The final right ascension that Brahe reported was 26° 0' 30", which is very close to both the mean of all 15 numbers in the right column and the mean of just the bottom 12.

• Per his biographer¹, the correct value of the right ascension of α Aries at the time was 26° 0′ 45″, which is quite close.

The mean and least squares

For context...

- (which you learned in DSC 10 is the foundation of linear regression).
 - This connection is made more clear in DSC 40A.
- origins of least squares.

• Without proper context, it may not be clear what **aggregation** (e.g. taking the mean or median of a set of values) has anything to do with least squares

• We'll spend a little bit of time providing this context, as we move into the

Making predictions

• As you've seen in DSC 10, the slope and intercept of the **line of best fit** come from finding the values of *a* and *b* that minimize **mean squared error**.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - (a + bx_i) \right)$$

- What if we want to use a more simple prediction technique what if we want to make a constant prediction, for each observation?
 - To do this, we'd need to find the constant c that minimizes mean squared error.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - c)^2$$

2

 $MSE = \frac{1}{n} \underbrace{\hat{S}(y_i - c)}_{i=1}$ By using calculus, you'll find that Ruc that minimizer MSE is $C = \frac{Y_1 + Y_2 + \cdots + Y_n}{n} = mean \{ \{ \} \}$

minimize MSE "least spuces"

Other types of error

• Why do we minimize mean **squared** error?

 Instead of squaring the errors before taking the mean, is there another operation we could apply?

 $MSE = \pi \sum_{i=1}^{n} (y_i - c)$

if you take the abs value of errors, they'll all be positive too L <u>i</u> Jyi-c n <u>i</u> Jyi-c absolute woor

Mean squared error vs. sum of squared errors

- Minimizing mean squared error is the same as minimizing the sum of squared errors.
- Key idea: the value of x that minimizes f(x) is the same value of x that minimizes $c \cdot f(x)$, if c is some positive constant.
- Many of the original authors we will study aimed to minimize the sum of squared errors, not the mean – but this is the same task.

Boscovich's method

The length of a meridian arc

• A meridian arc is a curve drawn between two points on the surface of the Earth that have the same longitude.

• In the mid-1700s, geodesists were concerned with studying the shape of Earth

• Earth is an ellipsoid that is slightly flatter at the poles than it is at the equator.

• Their goal at the time was to determine the relationship between the length of one degree of latitude near the North Pole and the length of one degree of latitude elsewhere on Earth.

• To do this, they measured the lengths of several meridian arcs.

Boscovich's data Roger Joseph Boscovich (1711-1787) was a Dalmatian astronomer, mathematician, and Jesuit priest.

• He obtained data containing the length of one degree of latitude at five different spots on Earth.

tio,			
		5	1751·6
		0 1	
Table 1.4. Boscovich's data	on meridian arcs. Latitude (θ)	Arc length (toises)	Boscovich' $\sin^2 \theta \times 10^{10}$
Table 1.4. Boscovich's data Location (1) Quito	on meridion arcs. Latitude (θ) 0°0'	Arc length (toises) 56,751	Boscovich ² $\sin^2 \theta \times 10^2$
Table 1.4. Boscovich's data Location (1) Quito (2) Cape of Good Hope	on meridian arcs. Latitude (θ) 0°0' 33°18'	Arc length (toises) 56,751 57,037	Boscovich $\sin^2 \theta \times 10^{-10}$ 0 2,987
Table 1.4. Boscovich's data Location (1) Quito (2) Cape of Good Hope (3) Rome	on meridian arcs. Latitude (θ) 0°0' 33°18' 42°59'	Arc length (toises) 56,751 57,037 56,979	Boscovich $\sin^2 \theta \times 10^{-10}$ 0 2,987 4,648
Table 1.4. Boscovich's data Location (1) Quito (2) Cape of Good Hope (3) Rome (4) Paris	on meridian arcs. Latitude (θ) 0°0' 33°18' 42°59' 49°23'	Arc length (toises) 56,751 57,037 56,979 57,074	Boscovich $\sin^2 \theta \times 10^{-100}$ 0 2,987 4,648 5,762

Source: Boscovich and Maire (1755, p. 500). Reprinted in Boscovich and Maire (1770, p. 482).

Note: Arc lengths are given as toises per degree measured, where 1 toise ≈ 6.39 feet. The value for sin² $\theta \times 10^4$ for the Cape of Good Hope is erroneous and is evidently based on 33°8'. The correct figure would be 3,014.

Source: Stigler, Studies in the History of Probability and Statistics, p. 43

The model

• A rough approximation for the length of an arc is

$a = z + y \sin^2 \theta$ where z is the length of a degree at the equator and y is the "excess".

- If y = 0, then the Earth is a perfect sphere, and meridian arcs are of the same length (z) at any latitude.
- If y > 0, the Earth is flatter towards the poles, and meridian arcs range from length z at the equator to length z + y at the North Pole.

A: latitude - measured, a: we length - we have data 3, y -> unknown!!!

<u>Source</u>

An abundance of data

$$a = z + y \sin^2 \theta$$

- If Boscovich had just 2 observations, he'd have a system of two equations and two unknowns, and would be able to solve for z and y.
- However, he had 5 observations, and had to deduce a method of computing *z* and *y* using all 5 observations.
- Ideas?

<i>Table 1.4.</i>	Boscovich's	data d	on	meridian	arcs.
				ANA WA A DOADOAA	

Location	Latitude (θ)	Arc length (toises)	Boscovich's $\sin^2 \theta \times 10$	
(1) Quito	0°0′	56,751	0	
(2) Cape of Good Hope	33°18′	57,037	2,987	
(3) Rome	42°59′	56,979	4,648	
(4) Paris	49°23′	57,074	5,762	
(5) Lapland	66°19′	57,422	8,386	

Source: Boscovich and Maire (1755, p. 500). Reprinted in Boscovich and Maire (1770, p. 482).

Note: Arc lengths are given as to ses per degree measured, where 1 to se ≈ 6.39 feet. The value for $\sin^2 \theta \times 10^4$ for the Cape of Good Hope is erroneous and is evidently based on 33°8'. The correct figure would be 3,014.

Boscovich's method want to find • For each of our five observations (θ_i, a_i) , we can write $a_i = z + y \sin^2 \theta_i$

• Boscovich's described a method for selecting z and y:

1. For each *i*, write $e_i = a_i - z - y \sin^2 \theta_i$.

• What does this resemble?

Least squares

- geodesy¹.
- 1. https://www.britannica.com/biography/Adrien-Marie-Legendre

 Adrien-Marie Legendre (1752-1833) was a French mathematician who was also active in the field of

 In 1791, the French Academy of Science defined a meter as being one ten millionth of the length of the meridian arc starting at the North Pole, passing through Paris, and ending at the equator.

• He helped measure the length of a meter.

Legendre's least squares

- In a 1805 paper about measuring the orbits of comets, Legendre published an appendix titled "Sur la Methode des moindres quarres", which detailed a general procedure for estimating coefficients of linear equations.
- He wrote (translated):

rendering the sum of the squares of the errors a minimum."

"Of all the principles which can be proposed for [making estimates from a sample], I think there is none more general, more exact, and more easy of application, than that of which we have made use... which consists of

Summary, next time

Summary, next time

- 1500-1800s was motivated by geodesy and astronomy.
 - Tycho Brahe's use of the mean.
 - Boscovich's method regarding meridian arcs.
 - Legendre's method of least squares.
- Next time: more on Legendre's development of least squares, Gauss' development of least squares, and regression.

Much of the advances regarding aggregation and statistical estimation in the