Lecture 3

Aggregation and Least Squares

History of Data Science, Winter 2022 @ UC San Diego Suraj Rampure

Announcements

- Moving forward: will hold office hours Monday 7:30-8PM AND Friday 3:30-4:30PM.
- Homework 3 will be released by tomorrow, and will be due Sunday, January 30th at 11:59PM.
 - Remember that you get one "homework drop".

Agenda

- Pythagorean means.
- Tycho Brahe's use of the mean.
- A pre-cursor to least squares Boscovich's method.
- Legendre and least squares.

Means

Means

- The concept of the "arithmetic mean" was known to the Pythagoreans in fact, they are known for establishing three types of means.
- However, means were not used for the purposes of **summarizing data** until much, much later.

Pythagorean means

From Archytas (member of the Pythagorean school of thought)¹:

"There are three 'means' in music: one is the arithmetic, the second is the geometric, and the third is the subcontrary, which they call 'harmonic'. The arithmetic mean is when there are three terms showing successively the same excess: the second exceeds the third by the same amount as the first exceeds the second. In this proportion, the ratio of the larger numbers is less, that of the smaller numbers greater."

Pythagorean means

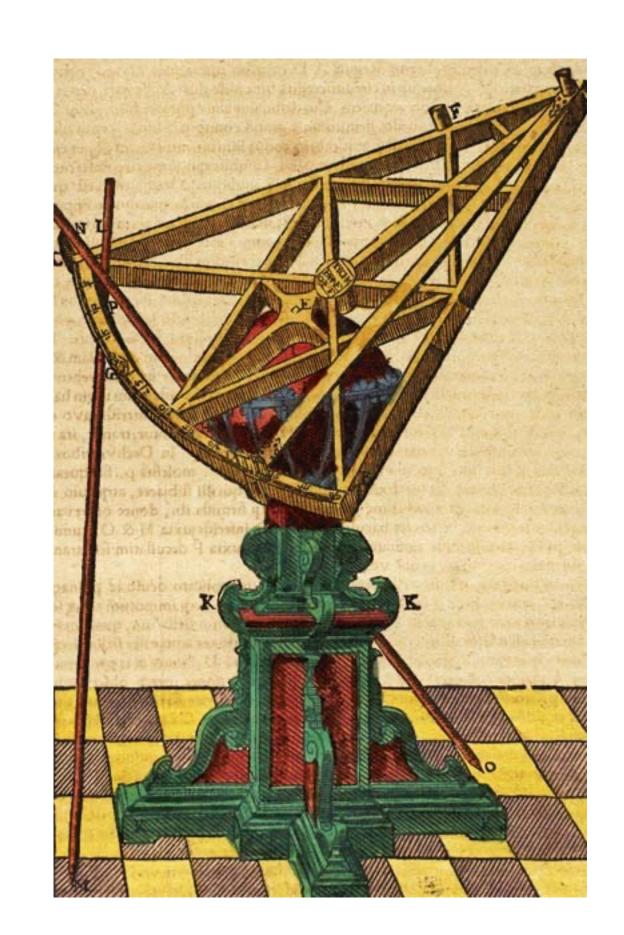
From Archytas (member of the Pythagorean school of thought)¹:

"The geometric mean is when the second is to the third as the first is to the second; in this, the greater numbers have the same ratio as the smaller numbers."

"The subcontrary, which we call harmonic, is as follows: by whatever part of itself the first term exceeds the second, the middle term exceeds the third by the same part of the third. In this proportion, the ratio of the larger numbers is larger, and of the lower numbers less."

Tycho Brahe

- Recall, **Tycho Brahe** (1546-1601) was a Danish astronomer.¹
- He was a pioneer in measuring the positions of stars in the night sky, without the use of telescopes.
- Kepler used Brahe's data when creating his laws of planetary motion.
- He is also one of the earliest scientists documented as having used the mean to **combine observations**.²
- Also supposedly lost his nose in a fight and wore a fake nose.

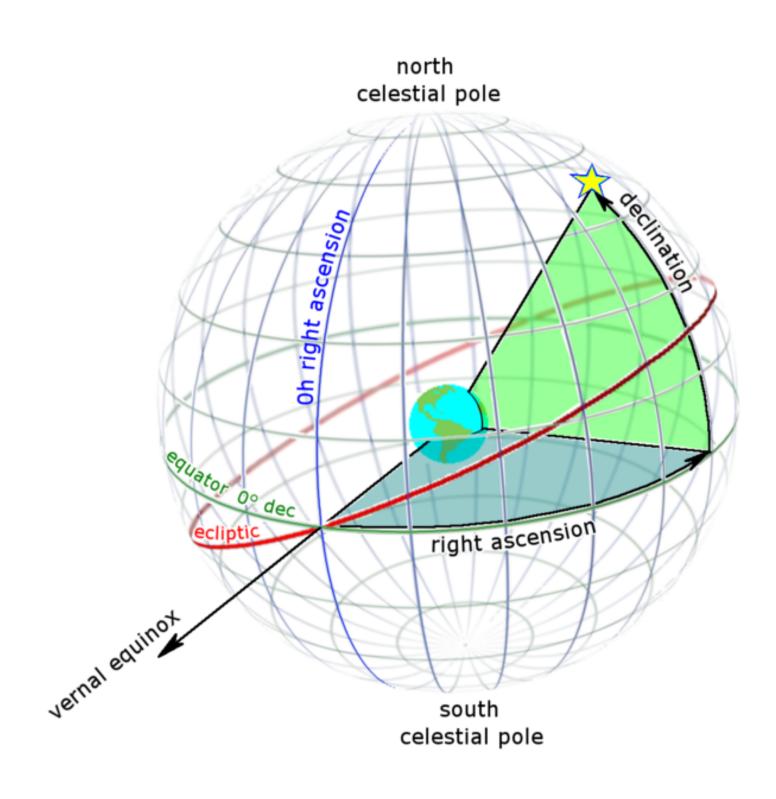


Tycho Brahe's triangular sextant

- 1. https://www.britannica.com/biography/Tycho-Brahe-Danish-astronomer
- 2. Pearson and Kendall, Studies in the History of Probability and Statistics, p122-123

Right ascension

- One of the earliest documented examples of **combining observations** is in the work of Tycho Brahe, who was measuring the **right ascension** of α Arietis (a star).
 - Right ascension is the celestial equivalent of longitude on Earth.
 - It is measured in units of **time**, relative to when a reference point (the "vernal equinox") passes overhead.
 - e.g. if an object's right ascension is 2 hours and 15 minutes, you will see it pass directly above you 2 hours and 15 minutes after the reference point does.
 - Similar to GMT-8 meaning "8 hours before Greenwich Meridian Time."



1582 Fo 1582 M 1582 A	ebruary 26 arch 20 pril 3					26° 26 26	0	32 30	
1582 F	ebruary 27 eptember 21			16 23	3-	26	0	20	
1582 M		25 26		33 43	}	26	0	38	
1582 M 1585 Se	arch 5 eptember 15			15 21	-	26	0	18	
1582 M 1585 Se	arch 9 ptember 15	25 26	59 1	49 16	>	26	0	32	
	ecember 26 ecember 15	25 26		51 32	}	26	0	42	
	ecember 27 ovember 29	25 26		22 52	>	26	0	37	
	nuary 9 ecember 6	$\frac{26}{25}$	2 58	5 49	>	26	0	27	,
	nuary 24 etober 26			44 13	>	26	0	29	
1587 Au 1588 Ap	gust 17 oril 16			40 48	>	26	0	14	
1587 Au 1588 Ap		26 25	1 59	1 6	}	26	0	4	
1587 Au 1588 Ma	_	25 26		$\frac{35}{20}$	}	26	0	28	
1587 Au 1588 Ap	~	25 26		$\frac{49}{30}$	>	26	0	39	

- Brahe collected several measurements for the right ascension of α Arietis from 1582-1588, with the goal of coming up with a single value.
- He selected 3 values from 1582, and 12 values from the next 6 years, each of which was the **mean** of two other observations.
- Question: how do we interpret these numbers and verify that he did indeed take the mean of each pair?

Source: Pearson and Kendall, Studies in the History of Probability and Statistics, p122-123

Aside: measuring time in degrees

- Right ascension is measured in time, and can vary from 0 hours to 24 hours (because one rotation of the Earth takes 24 hours).
- A circle has 360° degrees in it, so one way of describing time is as using

$$360^{\circ} = 24 \text{ hours}$$

- This means that $15^{\circ} = 1$ hour, and $1^{\circ} = 4$ minutes.
- We can further subdivide each degree into 60 **arcminutes**, denoted by ', and each arc minute into 60 **arcseconds**, denoted by ''.
- As an example, let's try and convert the following measurement into regular minutes:

Back to Brahe's data

1582	February 26				26°	0	44"	
	March 20				26	0	32	
	April 3				26	0	30	
1582	February 27	26°	4	′ 16″	26	0	20	
1585	September 21	25	56	23 ∫	20	Ĭ		
1582	March 5	25	56	33)	26	0	38	
1585	September 14	26	4	43]	20	0	00	
1582	March 5	25	59	15)	26	0	18	
1585	September 15	26	1	21	20	v	10	
1582	March 9	25	59	49)	26	0	32	
1585	September 15	26	1	16]	20	0	02	
1586	December 26	25	54	51)	26	0	42	
1588	December 15	26	6	32 5	20	0	12	
1586	December 27	25	52	22)	26	0	37	
1588	November 29	26	8	52	20		٠.	
1587	January 9	26	2	5)	26	0	27	
1588	December 6	25	58	49 5	20			,
1587	January 24	26	6	44)	26	0	29	
1588	October 26	25	54	13 ∫	20			
1587	August 17	26	5	40)	26	0	14	
1588	April 16	25	54	48	20	v	17	
1587	August 17	26	1	1)	26	0	4	
1588	April 16	25	59	$\left\{ \begin{array}{c} 1 \\ 6 \end{array} \right\}$	20	v	-	
1587	August 18	25	54	35)	26	0	28	
1588	March 28	26	6	20 5	20	U	20	
1587	August 18	25	54	49)	26	0	39	
	April 16	26	6	30	20	0	33	

- Now that we know how to interpret these numbers, we can verify that the operation Brahe used on each pair was the mean.
- Strategy: to compute $mean(d_1, d_2)$:
 - Convert d_1 and d_2 to minutes (i.e. regular numbers) and compute their mean.
 - Convert the mean back into degreesarcminutes-arcseconds.
- Let's try this in a Jupyter Notebook!

Reducing observational error

1582	February 26				26°	0	44"	
	March 20				26	0		
	April 3				26	0	30	
1582 J 1585 S	February 27 September 21	26° 25		$\binom{16''}{23}$	26	0	20	
	March 5 September 14	25 26		$\left\{\begin{array}{c} 33 \\ 43 \end{array}\right\}$	26	0	38	
1582 1	March 5 September 15	25 26		$\left\{\begin{array}{c}15\\21\end{array}\right\}$	26	0	18	
1582 1	March 9 September 15	25 26	59 1	}	26	0	32	
1586]	December 26 December 15	25 26		$\left. \begin{array}{c} 51 \\ 32 \end{array} \right\}$	26	0	42	
	December 27 November 29	25 26		$\left. \begin{array}{c} 22 \\ 52 \end{array} \right\}$	26	0	37	
	January 9 December 6		2 58	$\left\{\begin{array}{c}5\\49\end{array}\right\}$	26	0	27	,
	anuary 24 October 26	26 25		$\frac{44}{13}$ }	26	0	29	
	August 17 April 16	26	5	${40 \atop 48}$	26	0	14	
	August 17 April 16		1 59	-	26	0	4	
1587 A	lugust 18 Iarch 28	25 26		$\left. \begin{array}{c} 35 \\ 20 \end{array} \right\}$	26	0	28	
1587 A	ugust 18 pril 16	25 26	54	$\left\{\begin{array}{c}49\\30\end{array}\right\}$	26	0	39	

- The values in the right-most column are far less spread out than the values in the middle column.
- As such, Brahe used the mean to eliminate systematic errors.¹
- The final right ascension that Brahe reported was 26° 0′ 30″, which is very close to both the mean of all 15 numbers in the right column and the mean of just the bottom 12.
- Per his biographer¹, the correct value of the right ascension of α Aries at the time was 26° 0′ 45″, which is quite close.

^{1.} Pearson and Kendall, Studies in the History of Probability and Statistics, p122-123

The mean and least squares

For context...

- Without proper context, it may not be clear what **aggregation** (e.g. taking the mean or median of a set of values) has anything to do with **least squares** (which you learned in DSC 10 is the foundation of linear regression).
 - This connection is made more clear in DSC 40A.
- We'll spend a little bit of time providing this context, as we move into the origins of least squares.

Making predictions

• As you've seen in DSC 10, the slope and intercept of the **line of best fit** come from finding the values of a and b that minimize **mean squared error.**

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (a + bx_i))^2$$

- What if we want to use a more simple prediction technique what if we want to make a constant prediction, for each observation?
 - ullet To do this, we'd need to find the constant c that minimizes mean squared error.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - c)^2$$

Other types of error

• Why do we minimize mean **squared** error?

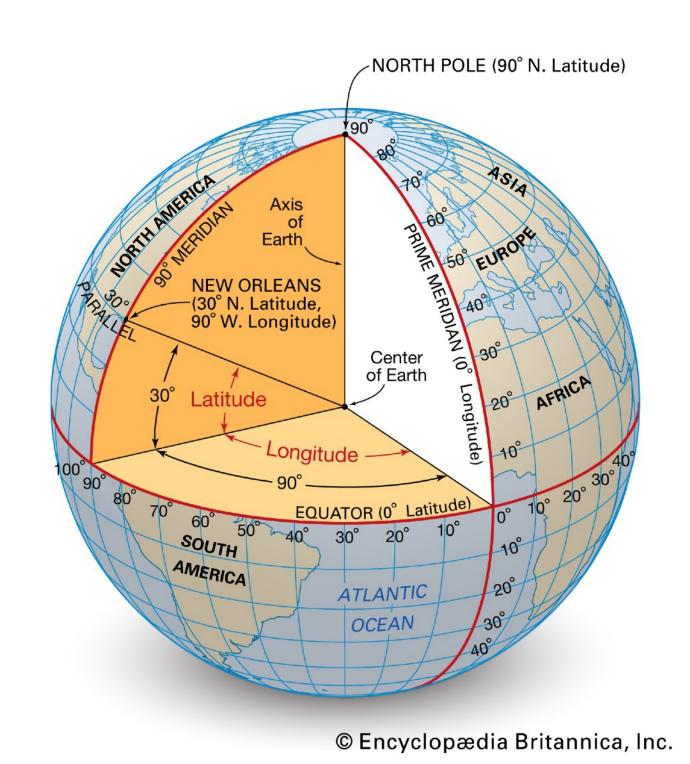
• Instead of squaring the errors before taking the mean, is there **another** operation we could apply?

Mean squared error vs. sum of squared errors

- Minimizing mean squared error is the same as minimizing the sum of squared errors.
- Key idea: the value of x that minimizes f(x) is the same value of x that minimizes $c \cdot f(x)$, if c is some positive constant.
- Many of the original authors we will study aimed to minimize the sum of squared errors, not the mean – but this is the same task.

Boscovich's method

The length of a meridian arc



surface of the Earth that have the same longitude.

• A meridian arc is a curve drawn between two points on the

- In the mid-1700s, **geodesists** were concerned with studying the shape of Earth.
 - Earth is an ellipsoid that is slightly flatter at the poles than it is at the equator.
- Their goal at the time was to determine the relationship between the length of one degree of latitude near the North Pole and the length of one degree of latitude elsewhere on Earth.
- To do this, they measured the lengths of several meridian arcs.

Boscovich's data

- Roger Joseph Boscovich (1711-1787) was a Dalmatian astronomer, mathematician, and Jesuit priest.
- He obtained data containing the length of one degree of latitude at five different spots on Earth.

Table 1.4. Boscovich's data on meridian arcs.

Location	Latitude (θ)	Arc length (toises)	Boscovich's $\sin^2 \theta \times 10^4$
(1) Quito	0°0′	56,751	0
(2) Cape of Good Hope	33°18′	57,037	2,987
(3) Rome	42°59′	56,979	4,648
(4) Paris	49°23′	57,074	5,762
(5) Lapland	66°19′	57,422	8,386

Source: Boscovich and Maire (1755, p. 500). Reprinted in Boscovich and Maire (1770, p. 482).

Note: Arc lengths are given as toises per degree measured, where 1 toise $\cong 6.39$ feet. The value for $\sin^2 \theta \times 10^4$ for the Cape of Good Hope is erroneous and is evidently based on 33°8′. The correct figure would be 3,014.

Source: Stigler, Studies in the History of Probability and Statistics, p. 43

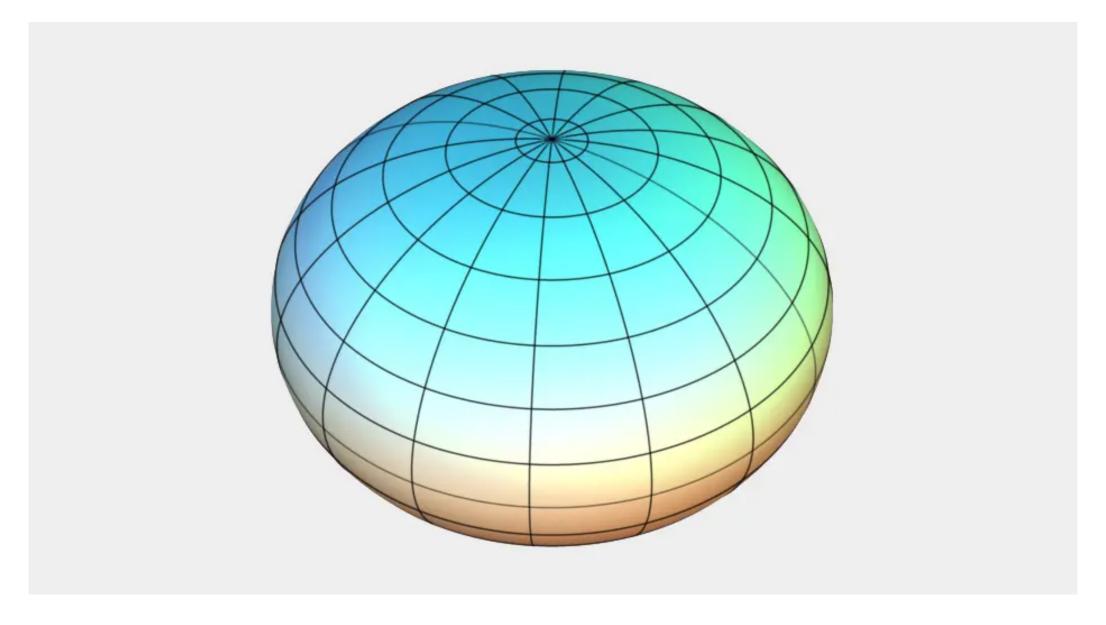
The model

• A rough approximation for the length of an arc is

$$a = z + y \sin^2 \theta$$

where z is the length of a degree at the equator and y is the "excess".

- If y = 0, then the Earth is a perfect sphere, and meridian arcs are of the same length (z) at any latitude.
- If y > 0, the Earth is flatter towards the poles, and meridian arcs range from length z at the equator to length z + y at the North Pole.



Source

An abundance of data

$$a = z + y \sin^2 \theta$$

- If Boscovich had just 2 observations, he'd have a system of two equations and two unknowns, and would be able to solve for z and y.
- However, he had 5 observations, and had to deduce a method of computing z and y using all 5 observations.
- Ideas?

Table 1.4. Boscovich's data on meridian arcs.

Location	Latitude (θ)	Arc length (toises)	Boscovich's $\sin^2 \theta \times 10^4$
(1) Quito	0°0′	56,751	0
(2) Cape of Good Hope	33°18′	57,037	2,987
(3) Rome	42°59′	56,979	4,648
(4) Paris	49°23′	57,074	5,762
(5) Lapland	66°19′	57,422	8,386

Source: Boscovich and Maire (1755, p. 500). Reprinted in Boscovich and Maire (1770, p. 482).

Note: Arc lengths are given as toises per degree measured, where 1 toise $\cong 6.39$ feet. The value for $\sin^2 \theta \times 10^4$ for the Cape of Good Hope is erroneous and is evidently based on 33°8′. The correct figure would be 3,014.

Boscovich's method

• For each of our five observations (θ_i, a_i) , we can write

$$a_i = z + y \sin^2 \theta_i$$

- ullet Boscovich's described a method for selecting z and y:
 - 1. For each *i*, write $e_i = a_i z y \sin^2 \theta_i$.
 - 2. Choose z and y such that $\sum_{i} e_i = 0$ and $\sum_{i} |e_i|$ is minimized.
- What does this resemble?

Least squares

Legendre

- Adrien-Marie Legendre (1752-1833) was a French mathematician who was also active in the field of geodesy¹.
 - In 1791, the French Academy of Science defined a meter as being one **ten millionth** of the length of the meridian arc starting at the North Pole, passing through Paris, and ending at the equator.
 - He helped measure the length of a meter.

Legendre's least squares

- In a 1805 paper about measuring the orbits of comets, Legendre published an appendix titled "Sur la Methode des moindres quarres", which detailed a general procedure for estimating coefficients of linear equations.
- He wrote (translated):

"Of all the principles which can be proposed for [making estimates from a sample], I think there is none more general, more exact, and more easy of application, than that of which we have made use... which consists of rendering the sum of the squares of the errors a minimum."

Summary, next time

Summary, next time

- Much of the advances regarding aggregation and statistical estimation in the 1500-1800s was motivated by geodesy and astronomy.
 - Tycho Brahe's use of the mean.
 - Boscovich's method regarding meridian arcs.
 - Legendre's method of least squares.
- **Next time:** more on Legendre's development of least squares, Gauss' development of least squares, and regression.