Skip to main content

Histogram

df.plot(kind='hist', y=data_col, bins=the_bins, density=True, ec='w')

Creates a histogram using a DataFrame.

Input:
kind : string
To create a histogram, use kind='hist'
y : label
Column to calculate frequency/probability density.
bins : integer or array, default None
If integer, number of bins to use.
If array, specifies the bin edges.
If not specified, matplotlib tries to calculate the optimal number of bins.
density : boolean, default False
If False, y-axis plots the number of observations.
If True, y-axis plots the probability density.
ec : string
Color for histogram bin outlines, use ec='w' for a white outline.
Returns:
Matplotlib plot created using parameters.
Return Type:
Matplotlib plot
Note:
  • In a histogram, only the last bin is inclusive of the right endpoint! [left, right)
  • The bins you specify don't have to include all data values; data values not in any bin won't be shown in the histogram.

pets.plot(kind='hist', y='Age', bins=np.arange(0, 15, 3), density=True, ec='w')

Histogram example 1

pets.plot(kind='hist', y='Weight', bins=5, density=True, ec='w')

Histogram example 2

# DataFrame with weights of only cats and dogs.
cats_dogs = bpd.DataFrame().assign(
cats=np.array(pets[pets.get('Species') == 'cat'].get('Weight')),
dogs=np.array(pets[pets.get('Species') == 'dog'].get('Weight')),
)

# Overlaid histogram.
bins = np.arange(0, 40, 15)
cats_dogs.plot(kind='hist', alpha=0.65, density=True, ec='w', bins=bins)

Histogram example 3

# Without the `bins` parameter.
pets.plot(kind='hist', y='Weight', density=True, ec='w')

Histogram example 4